These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 32371206)

  • 1. Characterizing the impacts of land use on nitrate load and water yield in an agricultural watershed in Atlantic Canada.
    Liang K; Jiang Y; Qi J; Fuller K; Nyiraneza J; Meng FR
    Sci Total Environ; 2020 Aug; 729():138793. PubMed ID: 32371206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing the long-term effects of land use changes on runoff patterns and food production in a large lake watershed with policy implications.
    Sun Z; Lotz T; Chang NB
    J Environ Manage; 2017 Dec; 204(Pt 1):92-101. PubMed ID: 28863340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitrate losses from forest during snowmelt: An underestimated source in mid-high latitude watershed.
    Cui X; Ouyang W; Liu L; Guo Z; Zhu W
    Water Res; 2024 Feb; 249():121005. PubMed ID: 38096727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling Impact of Land Use Dynamics on Hydrology and Sedimentation of Megech Dam Watershed, Ethiopia.
    Assfaw AT
    ScientificWorldJournal; 2020; 2020():6530278. PubMed ID: 33162843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling hydrology, groundwater recharge and non-point nitrate loadings in the Himalayan Upper Yamuna basin.
    Narula KK; Gosain AK
    Sci Total Environ; 2013 Dec; 468-469 Suppl():S102-16. PubMed ID: 23452999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulating the influence of integrated crop-livestock systems on water yield at watershed scale.
    Pérez-Gutiérrez JD; Kumar S
    J Environ Manage; 2019 Jun; 239():385-394. PubMed ID: 30925408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling Miscanthus in the soil and water assessment tool (SWAT) to simulate its water quality effects as a bioenergy crop.
    Ng TL; Eheart JW; Cai X; Miguez F
    Environ Sci Technol; 2010 Sep; 44(18):7138-44. PubMed ID: 20681575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Statistical assessment of nonpoint source pollution in agricultural watersheds in the Lower Grand River watershed, MO, USA.
    Jabbar FK; Grote K
    Environ Sci Pollut Res Int; 2019 Jan; 26(2):1487-1506. PubMed ID: 30430446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The simulation research of dissolved nitrogen and phosphorus non-point source pollution in Xiao-Jiang watershed of Three Gorges Reservoir area.
    Wu L; Long TY; Li CM
    Water Sci Technol; 2010; 61(6):1601-16. PubMed ID: 20351440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of land cover and land use change on runoff characteristics.
    Sajikumar N; Remya RS
    J Environ Manage; 2015 Sep; 161():460-468. PubMed ID: 25575849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing controls on selenium fate and transport in watersheds using the SWAT model.
    Neupane P; Bailey RT; Tavakoli-Kivi S
    Sci Total Environ; 2020 Oct; 738():140318. PubMed ID: 32806359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the hydrological impacts of land use/land cover changes in the Andassa watershed, Blue Nile Basin, Ethiopia.
    Gashaw T; Tulu T; Argaw M; Worqlul AW
    Sci Total Environ; 2018 Apr; 619-620():1394-1408. PubMed ID: 29734616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of total maximum daily load implementation strategies for nitrate impairment of the Raccoon River, Iowa.
    Manoj K; Wolter CF; Schilling KE; Gassman PW
    J Environ Qual; 2010; 39(4):1317-27. PubMed ID: 20830920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling nitrate-nitrogen load reduction strategies for the Des Moines River, Iowa using SWAT.
    Schilling KE; Wolter CF
    Environ Manage; 2009 Oct; 44(4):671-82. PubMed ID: 19707706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Impact of changes in land use and climate on the runoff in Liuxihe Watershed based on SWAT model].
    Yuan YZ; Zhang ZD; Meng JH
    Ying Yong Sheng Tai Xue Bao; 2015 Apr; 26(4):989-98. PubMed ID: 26259438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying the impact of land use land cover change on streamflow and nitrate load following modeling approach: a case study in the upstream Dong Nai River basin, Vietnam.
    Le TH; Nguyen TNQ; Tran TXP; Nguyen HQ; Truong NCQ; Le TL; Pham VH; Pham TL; Tran THY; Tran TT
    Environ Sci Pollut Res Int; 2023 Jun; 30(26):68563-68576. PubMed ID: 37121945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of targeted pollutant-mitigation-strategies to reduce nitrate and sediment hotspots in agricultural watershed.
    Teshager AD; Gassman PW; Secchi S; Schoof JT
    Sci Total Environ; 2017 Dec; 607-608():1188-1200. PubMed ID: 28732398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Baseflow nitrate in relation to stream order and agricultural land use.
    Kang S; Lin H; Gburek WJ; Folmar GJ; Lowery B
    J Environ Qual; 2008; 37(3):808-16. PubMed ID: 18453401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growing season surface water loading of fecal indicator organisms within a rural watershed.
    Sinclair A; Hebb D; Jamieson R; Gordon R; Benedict K; Fuller K; Stratton GW; Madani A
    Water Res; 2009 Mar; 43(5):1199-206. PubMed ID: 19117588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving nitrate load simulation of the SWAT model in an extensively tile-drained watershed.
    Kim J; Her Y; Bhattarai R; Jeong H
    Sci Total Environ; 2023 Dec; 904():166331. PubMed ID: 37595899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.