These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 32371451)
1. Inferring Parameters of the Distribution of Fitness Effects of New Mutations When Beneficial Mutations Are Strongly Advantageous and Rare. Booker TR G3 (Bethesda); 2020 Jul; 10(7):2317-2326. PubMed ID: 32371451 [TBL] [Abstract][Full Text] [Related]
2. Inference of Distribution of Fitness Effects and Proportion of Adaptive Substitutions from Polymorphism Data. Tataru P; Mollion M; Glémin S; Bataillon T Genetics; 2017 Nov; 207(3):1103-1119. PubMed ID: 28951530 [TBL] [Abstract][Full Text] [Related]
3. Comparison of the Full Distribution of Fitness Effects of New Amino Acid Mutations Across Great Apes. Castellano D; Macià MC; Tataru P; Bataillon T; Munch K Genetics; 2019 Nov; 213(3):953-966. PubMed ID: 31488516 [TBL] [Abstract][Full Text] [Related]
4. Inferring the distributions of fitness effects and proportions of strongly deleterious mutations. Charmouh AP; Bocedi G; Hartfield M G3 (Bethesda); 2023 Aug; 13(9):. PubMed ID: 37337692 [TBL] [Abstract][Full Text] [Related]
5. polyDFE: Inferring the Distribution of Fitness Effects and Properties of Beneficial Mutations from Polymorphism Data. Tataru P; Bataillon T Methods Mol Biol; 2020; 2090():125-146. PubMed ID: 31975166 [TBL] [Abstract][Full Text] [Related]
6. The distribution of mutational effects on fitness in Caenorhabditis elegans inferred from standing genetic variation. Gilbert KJ; Zdraljevic S; Cook DE; Cutter AD; Andersen EC; Baer CF Genetics; 2022 Jan; 220(1):. PubMed ID: 34791202 [TBL] [Abstract][Full Text] [Related]
7. The evolutionarily stable distribution of fitness effects. Rice DP; Good BH; Desai MM Genetics; 2015 May; 200(1):321-9. PubMed ID: 25762525 [TBL] [Abstract][Full Text] [Related]
8. Effects of new mutations on fitness: insights from models and data. Bataillon T; Bailey SF Ann N Y Acad Sci; 2014 Jul; 1320(1):76-92. PubMed ID: 24891070 [TBL] [Abstract][Full Text] [Related]
9. Joint inference of the distribution of fitness effects of deleterious mutations and population demography based on nucleotide polymorphism frequencies. Keightley PD; Eyre-Walker A Genetics; 2007 Dec; 177(4):2251-61. PubMed ID: 18073430 [TBL] [Abstract][Full Text] [Related]
10. A method for inferring the rate of occurrence and fitness effects of advantageous mutations. Schneider A; Charlesworth B; Eyre-Walker A; Keightley PD Genetics; 2011 Dec; 189(4):1427-37. PubMed ID: 21954160 [TBL] [Abstract][Full Text] [Related]
11. Causes of natural variation in fitness: evidence from studies of Drosophila populations. Charlesworth B Proc Natl Acad Sci U S A; 2015 Feb; 112(6):1662-9. PubMed ID: 25572964 [TBL] [Abstract][Full Text] [Related]
12. Estimating the rate of adaptive molecular evolution when the evolutionary divergence between species is small. Keightley PD; Eyre-Walker A J Mol Evol; 2012 Feb; 74(1-2):61-8. PubMed ID: 22327123 [TBL] [Abstract][Full Text] [Related]
13. The dynamics of adaptation on correlated fitness landscapes. Kryazhimskiy S; Tkacik G; Plotkin JB Proc Natl Acad Sci U S A; 2009 Nov; 106(44):18638-43. PubMed ID: 19858497 [TBL] [Abstract][Full Text] [Related]
14. The fates of mutant lineages and the distribution of fitness effects of beneficial mutations in laboratory budding yeast populations. Frenkel EM; Good BH; Desai MM Genetics; 2014 Apr; 196(4):1217-26. PubMed ID: 24514901 [TBL] [Abstract][Full Text] [Related]
16. Estimating the rate of adaptive molecular evolution in the presence of slightly deleterious mutations and population size change. Eyre-Walker A; Keightley PD Mol Biol Evol; 2009 Sep; 26(9):2097-108. PubMed ID: 19535738 [TBL] [Abstract][Full Text] [Related]
17. Inferring the Frequency Spectrum of Derived Variants to Quantify Adaptive Molecular Evolution in Protein-Coding Genes of Drosophila melanogaster. Keightley PD; Campos JL; Booker TR; Charlesworth B Genetics; 2016 Jun; 203(2):975-84. PubMed ID: 27098912 [TBL] [Abstract][Full Text] [Related]
18. Inference of the Distribution of Selection Coefficients for New Nonsynonymous Mutations Using Large Samples. Kim BY; Huber CD; Lohmueller KE Genetics; 2017 May; 206(1):345-361. PubMed ID: 28249985 [TBL] [Abstract][Full Text] [Related]
19. Inferring the distribution of fitness effects of spontaneous mutations in Chlamydomonas reinhardtii. Böndel KB; Kraemer SA; Samuels T; McClean D; Lachapelle J; Ness RW; Colegrave N; Keightley PD PLoS Biol; 2019 Jun; 17(6):e3000192. PubMed ID: 31242179 [TBL] [Abstract][Full Text] [Related]
20. Hunting for Beneficial Mutations: Conditioning on SIFT Scores When Estimating the Distribution of Fitness Effect of New Mutations. Chen J; Bataillon T; Glémin S; Lascoux M Genome Biol Evol; 2022 Jan; 14(1):. PubMed ID: 34180988 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]