These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 32371483)
1. Neutron crystallography of copper amine oxidase reveals keto/enolate interconversion of the quinone cofactor and unusual proton sharing. Murakawa T; Kurihara K; Shoji M; Shibazaki C; Sunami T; Tamada T; Yano N; Yamada T; Kusaka K; Suzuki M; Shigeta Y; Kuroki R; Hayashi H; Yano T; Tanizawa K; Adachi M; Okajima T Proc Natl Acad Sci U S A; 2020 May; 117(20):10818-10824. PubMed ID: 32371483 [TBL] [Abstract][Full Text] [Related]
2. Chemical rescue of a site-specific mutant of bacterial copper amine oxidase for generation of the topa quinone cofactor. Matsunami H; Okajima T; Hirota S; Yamaguchi H; Hori H; Kuroda S; Tanizawa K Biochemistry; 2004 Mar; 43(8):2178-87. PubMed ID: 14979714 [TBL] [Abstract][Full Text] [Related]
3. Probing the Catalytic Mechanism of Copper Amine Oxidase from Arthrobacter globiformis with Halide Ions. Murakawa T; Hamaguchi A; Nakanishi S; Kataoka M; Nakai T; Kawano Y; Yamaguchi H; Hayashi H; Tanizawa K; Okajima T J Biol Chem; 2015 Sep; 290(38):23094-109. PubMed ID: 26269595 [TBL] [Abstract][Full Text] [Related]
4. Kinetic and structural studies on the catalytic role of the aspartic acid residue conserved in copper amine oxidase. Chiu YC; Okajima T; Murakawa T; Uchida M; Taki M; Hirota S; Kim M; Yamaguchi H; Kawano Y; Kamiya N; Kuroda S; Hayashi H; Yamamoto Y; Tanizawa K Biochemistry; 2006 Apr; 45(13):4105-20. PubMed ID: 16566584 [TBL] [Abstract][Full Text] [Related]
5. Oxygen Activation Switch in the Copper Amine Oxidase of Escherichia coli. Gaule TG; Smith MA; Tych KM; Pirrat P; Trinh CH; Pearson AR; Knowles PF; McPherson MJ Biochemistry; 2018 Sep; 57(36):5301-5314. PubMed ID: 30110143 [TBL] [Abstract][Full Text] [Related]
6. Role of copper ion in bacterial copper amine oxidase: spectroscopic and crystallographic studies of metal-substituted enzymes. Kishishita S; Okajima T; Kim M; Yamaguchi H; Hirota S; Suzuki S; Kuroda S; Tanizawa K; Mure M J Am Chem Soc; 2003 Jan; 125(4):1041-55. PubMed ID: 12537504 [TBL] [Abstract][Full Text] [Related]
7. Correlation of active site metal content in human diamine oxidase with trihydroxyphenylalanine quinone cofactor biogenesis . McGrath AP; Caradoc-Davies T; Collyer CA; Guss JM Biochemistry; 2010 Sep; 49(38):8316-24. PubMed ID: 20722416 [TBL] [Abstract][Full Text] [Related]
8. Crystal structure of a quinoenzyme: copper amine oxidase of Escherichia coli at 2 A resolution. Parsons MR; Convery MA; Wilmot CM; Yadav KD; Blakeley V; Corner AS; Phillips SE; McPherson MJ; Knowles PF Structure; 1995 Nov; 3(11):1171-84. PubMed ID: 8591028 [TBL] [Abstract][Full Text] [Related]
9. X-ray snapshots of quinone cofactor biogenesis in bacterial copper amine oxidase. Kim M; Okajima T; Kishishita S; Yoshimura M; Kawamori A; Tanizawa K; Yamaguchi H Nat Struct Biol; 2002 Aug; 9(8):591-6. PubMed ID: 12134140 [TBL] [Abstract][Full Text] [Related]
11. Crystal structure of a eukaryotic (pea seedling) copper-containing amine oxidase at 2.2 A resolution. Kumar V; Dooley DM; Freeman HC; Guss JM; Harvey I; McGuirl MA; Wilce MC; Zubak VM Structure; 1996 Aug; 4(8):943-55. PubMed ID: 8805580 [TBL] [Abstract][Full Text] [Related]
12. Crystal structure at 2.5 A resolution of zinc-substituted copper amine oxidase of Hansenula polymorpha expressed in Escherichia coli. Chen Z; Schwartz B; Williams NK; Li R; Klinman JP; Mathews FS Biochemistry; 2000 Aug; 39(32):9709-17. PubMed ID: 10933787 [TBL] [Abstract][Full Text] [Related]
13. The role of protein crystallography in defining the mechanisms of biogenesis and catalysis in copper amine oxidase. Klema VJ; Wilmot CM Int J Mol Sci; 2012; 13(5):5375-5405. PubMed ID: 22754303 [TBL] [Abstract][Full Text] [Related]
14. Reinvestigation of metal ion specificity for quinone cofactor biogenesis in bacterial copper amine oxidase. Okajima T; Kishishita S; Chiu YC; Murakawa T; Kim M; Yamaguchi H; Hirota S; Kuroda S; Tanizawa K Biochemistry; 2005 Sep; 44(36):12041-8. PubMed ID: 16142901 [TBL] [Abstract][Full Text] [Related]
15. The active site base controls cofactor reactivity in Escherichia coli amine oxidase: x-ray crystallographic studies with mutational variants. Murray JM; Saysell CG; Wilmot CM; Tambyrajah WS; Jaeger J; Knowles PF; Phillips SE; McPherson MJ Biochemistry; 1999 Jun; 38(26):8217-27. PubMed ID: 10387067 [TBL] [Abstract][Full Text] [Related]
17. Current status of neutron crystallography in structural biology. Kono F; Kurihara K; Tamada T Biophys Physicobiol; 2022; 19():1-10. PubMed ID: 35666700 [TBL] [Abstract][Full Text] [Related]
18. Relationship between conserved consensus site residues and the productive conformation for the TPQ cofactor in a copper-containing amine oxidase from yeast. Schwartz B; Green EL; Sanders-Loehr J; Klinman JP Biochemistry; 1998 Nov; 37(47):16591-600. PubMed ID: 9843426 [TBL] [Abstract][Full Text] [Related]
19. Gene organization and molecular modeling of copper amine oxidase from Aspergillus niger: re-evaluation of the cofactor structure. Frébort I; Sebela M; Hirota S; Yamada M; Tamaki H; Kumagai H; Adachi O; Pec P Biol Chem; 2003; 384(10-11):1451-61. PubMed ID: 14669988 [TBL] [Abstract][Full Text] [Related]
20. Mechanism of post-translational quinone formation in copper amine oxidases and its relationship to the catalytic turnover. Dubois JL; Klinman JP Arch Biochem Biophys; 2005 Jan; 433(1):255-65. PubMed ID: 15581581 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]