These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 32371992)

  • 41. Processing light with an optically tunable mechanical memory.
    Lake DP; Mitchell M; Sukachev DD; Barclay PE
    Nat Commun; 2021 Jan; 12(1):663. PubMed ID: 33510152
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Terahertz cavity optomechanics using a topological nanophononic superlattice.
    Chang H; Li Z; Lou W; Yao Q; Lai JM; Liu B; Ni H; Niu Z; Chang K; Zhang J
    Nanoscale; 2022 Sep; 14(36):13046-13052. PubMed ID: 36056707
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Coherent optical wavelength conversion via cavity optomechanics.
    Hill JT; Safavi-Naeini AH; Chan J; Painter O
    Nat Commun; 2012; 3():1196. PubMed ID: 23149741
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A low-frequency chip-scale optomechanical oscillator with 58 kHz mechanical stiffening and more than 100
    Huang Y; Flores JGF; Cai Z; Yu M; Kwong DL; Wen G; Churchill L; Wong CW
    Sci Rep; 2017 Jun; 7(1):4383. PubMed ID: 28663563
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Topological optomechanically induced transparency.
    Zangeneh-Nejad F; Fleury R
    Opt Lett; 2020 Nov; 45(21):5966-5969. PubMed ID: 33137042
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Controllable optomechanical coupling and Drude self-pulsation plasma locking in chip-scale optomechanical cavities.
    Huang Y; Flores JG; Cai Z; Wu J; Yu M; Kwong DL; Wen G; Churchill L; Wong CW
    Opt Express; 2017 Mar; 25(6):6851-6859. PubMed ID: 28381027
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Optomechanically induced transparency in the mechanical-mode splitting regime.
    Ma J; You C; Si LG; Xiong H; Yang X; Wu Y
    Opt Lett; 2014 Jul; 39(14):4180-3. PubMed ID: 25121681
    [TBL] [Abstract][Full Text] [Related]  

  • 48. On-chip mechanical exceptional points based on an optomechanical zipper cavity.
    Wu N; Cui K; Xu Q; Feng X; Liu F; Zhang W; Huang Y
    Sci Adv; 2023 Jan; 9(3):eabp8892. PubMed ID: 36652517
    [TBL] [Abstract][Full Text] [Related]  

  • 49. From cavity optomechanics to cavity-less exciton optomechanics: a review.
    Chang H; Zhang J
    Nanoscale; 2022 Nov; 14(45):16710-16730. PubMed ID: 36245359
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Broadband frequency conversion and shaping of single photons emitted from a nonlinear cavity.
    McCutcheon MW; Chang DE; Zhang Y; Lukin MD; Loncar M
    Opt Express; 2009 Dec; 17(25):22689-703. PubMed ID: 20052195
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Semiconductor-on-diamond cavities for spin optomechanics.
    Ma X; Shandilya PK; Barclay PE
    Opt Express; 2023 Jul; 31(14):22470-22480. PubMed ID: 37475357
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optomechanical nonlinearity enhanced optical sensors.
    Fan J; Huang C; Zhu L
    Opt Express; 2015 Feb; 23(3):2973-81. PubMed ID: 25836157
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Temporal rocking in a nonlinear hybrid optomechanical system.
    Zhang X; Sheng J; Wu H
    Opt Express; 2018 Mar; 26(5):6285-6293. PubMed ID: 29529820
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Optomechanical measurement of photon spin angular momentum and optical torque in integrated photonic devices.
    He L; Li H; Li M
    Sci Adv; 2016 Sep; 2(9):e1600485. PubMed ID: 27626072
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electromagnetically induced transparency with a single optomechanical microring resonator.
    Ren L; Wen H; Shi L; Zhang X
    Opt Lett; 2022 Mar; 47(6):1363-1366. PubMed ID: 35290314
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Narrowing the filter-cavity bandwidth in gravitational-wave detectors via optomechanical interaction.
    Ma Y; Danilishin SL; Zhao C; Miao H; Korth WZ; Chen Y; Ward RL; Blair DG
    Phys Rev Lett; 2014 Oct; 113(15):151102. PubMed ID: 25375698
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Signatures of nonlinear cavity optomechanics in the weak coupling regime.
    Børkje K; Nunnenkamp A; Teufel JD; Girvin SM
    Phys Rev Lett; 2013 Aug; 111(5):053603. PubMed ID: 23952399
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Controllable optical response in a three-mode optomechanical system by driving the cavities on different sidebands.
    Du L; Chen YT; Li Y; Wu JH
    Opt Express; 2019 Jul; 27(15):21843-21855. PubMed ID: 31510254
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Two-dimensional optomechanical crystal cavity with high quantum cooperativity.
    Ren H; Matheny MH; MacCabe GS; Luo J; Pfeifer H; Mirhosseini M; Painter O
    Nat Commun; 2020 Jul; 11(1):3373. PubMed ID: 32632132
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Photon-assisted entanglement and squeezing generation and decoherence suppression via a quadratic optomechanical coupling.
    Zhang Z; Wang X
    Opt Express; 2020 Feb; 28(3):2732-2743. PubMed ID: 32121955
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.