BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 32372151)

  • 1. Testing the Ferguson model for the cold-hardiness of dormant grapevine buds in a temperate and subtropical valley of Chile.
    Rubio S; Pérez FJ
    Int J Biometeorol; 2020 Aug; 64(8):1401-1408. PubMed ID: 32372151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Abscisic acid (ABA) and low temperatures synergistically increase the expression of CBF/DREB1 transcription factors and cold-hardiness in grapevine dormant buds.
    Rubio S; Noriega X; Pérez FJ
    Ann Bot; 2019 Mar; 123(4):681-689. PubMed ID: 30418484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is erratic bud-break in grapevines grown in warm winter areas related to disturbances in mitochondrial respiratory capacity and oxidative metabolism?
    Pérez FJ; Rubio S; Ormeño-Núñez J
    Funct Plant Biol; 2007 Aug; 34(7):624-632. PubMed ID: 32689390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic thermal time model of cold hardiness for dormant grapevine buds.
    Ferguson JC; Tarara JM; Mills LJ; Grove GG; Keller M
    Ann Bot; 2011 Mar; 107(3):389-96. PubMed ID: 21212090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing the influence of autumnal temperature fluctuations on cold hardiness in different grapevine cultivars: variations across vine age and bud positions.
    Kaya O; Delavar H; Shikanai A; Auwarter C; Hatterman-Valenti H
    Front Plant Sci; 2024; 15():1379328. PubMed ID: 38828219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deacclimation kinetics as a quantitative phenotype for delineating the dormancy transition and thermal efficiency for budbreak in
    Kovaleski AP; Reisch BI; Londo JP
    AoB Plants; 2018 Oct; 10(5):ply066. PubMed ID: 31572566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ABA promotes starch synthesis and storage metabolism in dormant grapevine buds.
    Rubio S; Noriega X; Pérez FJ
    J Plant Physiol; 2019; 234-235():1-8. PubMed ID: 30639992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in respiration between dormant and non-dormant buds suggest the involvement of ABA in the development of endodormancy in grapevines.
    Parada F; Noriega X; Dantas D; Bressan-Smith R; Pérez FJ
    J Plant Physiol; 2016 Aug; 201():71-78. PubMed ID: 27448722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimized differential thermal analysis sheds light on the effect of temperature on peach floral bud cold hardiness and transition from endo- to ecodormancy.
    Sterle DG; Caspari HW; Minas IS
    Plant Sci; 2023 Oct; 335():111791. PubMed ID: 37451549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macro- and microclimate conditions may alter grapevine deacclimation: variation in thermal amplitude in two contrasting wine regions from North and South America.
    Antivilo FG; Paz RC; Keller M; Borgo R; Tognetti J; Juñent FR
    Int J Biometeorol; 2017 Dec; 61(12):2033-2045. PubMed ID: 28717999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exogenous abscisic acid enhances physiological, metabolic, and transcriptional cold acclimation responses in greenhouse-grown grapevines.
    Wang H; Blakeslee JJ; Jones ML; Chapin LJ; Dami IE
    Plant Sci; 2020 Apr; 293():110437. PubMed ID: 32081274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Possible role of catalase in post-dormancy bud break in grapevines.
    Pérez FJ; Lira W
    J Plant Physiol; 2005 Mar; 162(3):301-8. PubMed ID: 15832682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sprouting of paradormant and endodormant grapevine buds under conditions of forced growth: similarities and differences.
    Pérez FJ; Noriega X
    Planta; 2018 Oct; 248(4):837-847. PubMed ID: 29936547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tempo of gene regulation in wild and cultivated Vitis species shows coordination between cold deacclimation and budbreak.
    Kovaleski AP; Londo JP
    Plant Sci; 2019 Oct; 287():110178. PubMed ID: 31481199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Abscisic Acid (ABA ) Promotes the Induction and Maintenance of Pear (Pyrus pyrifolia White Pear Group) Flower Bud Endodormancy.
    Li J; Xu Y; Niu Q; He L; Teng Y; Bai S
    Int J Mol Sci; 2018 Jan; 19(1):. PubMed ID: 29361708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. X-ray phase contrast imaging of Vitis spp. buds shows freezing pattern and correlation between volume and cold hardiness.
    Kovaleski AP; Londo JP; Finkelstein KD
    Sci Rep; 2019 Oct; 9(1):14949. PubMed ID: 31628356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of chill unit accumulation and temperature on woody plant deacclimation kinetics.
    North M; Workmaster BA; Atucha A
    Physiol Plant; 2022 May; 174(3):e13717. PubMed ID: 35592923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic modelling of cold-hardiness in tea buds by imitating past temperature memory.
    Kimura K; Yasutake D; Oki T; Yoshida K; Kitano M
    Ann Bot; 2021 Feb; 127(3):317-326. PubMed ID: 33247901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationships among cold hardiness, root growth potential and bud dormancy in three conifers.
    Burr KE; Tinus RW; Wallner SJ; King RM
    Tree Physiol; 1989 Sep; 5(3):291-306. PubMed ID: 14972975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogen cyanamide induces grape bud endodormancy release through carbohydrate metabolism and plant hormone signaling.
    Liang D; Huang X; Shen Y; Shen T; Zhang H; Lin L; Wang J; Deng Q; Lyu X; Xia H
    BMC Genomics; 2019 Dec; 20(1):1034. PubMed ID: 31888462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.