These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 32372199)
1. A novel insight into the mode of action of glufosinate: how reactive oxygen species are formed. Takano HK; Beffa R; Preston C; Westra P; Dayan FE Photosynth Res; 2020 Jun; 144(3):361-372. PubMed ID: 32372199 [TBL] [Abstract][Full Text] [Related]
2. Reactive oxygen species trigger the fast action of glufosinate. Takano HK; Beffa R; Preston C; Westra P; Dayan FE Planta; 2019 Jun; 249(6):1837-1849. PubMed ID: 30850862 [TBL] [Abstract][Full Text] [Related]
3. The knockdown of chloroplastic ascorbate peroxidases reveals its regulatory role in the photosynthesis and protection under photo-oxidative stress in rice. Caverzan A; Bonifacio A; Carvalho FE; Andrade CM; Passaia G; Schünemann M; Maraschin Fdos S; Martins MO; Teixeira FK; Rauber R; Margis R; Silveira JA; Margis-Pinheiro M Plant Sci; 2014 Jan; 214():74-87. PubMed ID: 24268165 [TBL] [Abstract][Full Text] [Related]
4. Reactive oxygen species from chloroplasts contribute to 3-acetyl-5-isopropyltetramic acid-induced leaf necrosis of Arabidopsis thaliana. Chen S; Yin C; Strasser RJ; Govindjee ; Yang C; Qiang S Plant Physiol Biochem; 2012 Mar; 52():38-51. PubMed ID: 22305066 [TBL] [Abstract][Full Text] [Related]
5. Involvement of glutamine synthetase 2 (GS2) amplification and overexpression in Amaranthus palmeri resistance to glufosinate. Noguera MM; Porri A; Werle IS; Heiser J; Brändle F; Lerchl J; Murphy B; Betz M; Gatzmann F; Penkert M; Tuerk C; Meyer L; Roma-Burgos N Planta; 2022 Aug; 256(3):57. PubMed ID: 35960361 [TBL] [Abstract][Full Text] [Related]
6. Glufosinate-ammonium: a review of the current state of knowledge. Takano HK; Dayan FE Pest Manag Sci; 2020 Dec; 76(12):3911-3925. PubMed ID: 32578317 [TBL] [Abstract][Full Text] [Related]
7. Synergistic effects of chromium and copper on photosynthetic inhibition, subcellular distribution, and related gene expression in Brassica napus cultivars. Li L; Long M; Islam F; Farooq MA; Wang J; Mwamba TM; Shou J; Zhou W Environ Sci Pollut Res Int; 2019 Apr; 26(12):11827-11845. PubMed ID: 30820917 [TBL] [Abstract][Full Text] [Related]
8. Toxic effects of heavy metals Pb and Cd on mulberry (Morus alba L.) seedling leaves: Photosynthetic function and reactive oxygen species (ROS) metabolism responses. Huihui Z; Xin L; Zisong X; Yue W; Zhiyuan T; Meijun A; Yuehui Z; Wenxu Z; Nan X; Guangyu S Ecotoxicol Environ Saf; 2020 Jun; 195():110469. PubMed ID: 32179235 [TBL] [Abstract][Full Text] [Related]
9. Superoxide dismutase and ascorbate peroxidase improve the recovery of photosynthesis in sugarcane plants subjected to water deficit and low substrate temperature. Sales CR; Ribeiro RV; Silveira JA; Machado EC; Martins MO; Lagôa AM Plant Physiol Biochem; 2013 Dec; 73():326-36. PubMed ID: 24184453 [TBL] [Abstract][Full Text] [Related]
10. Peroxisomal APX knockdown triggers antioxidant mechanisms favourable for coping with high photorespiratory H2 O2 induced by CAT deficiency in rice. Sousa RH; Carvalho FE; Ribeiro CW; Passaia G; Cunha JR; Lima-Melo Y; Margis-Pinheiro M; Silveira JA Plant Cell Environ; 2015 Mar; 38(3):499-513. PubMed ID: 25039271 [TBL] [Abstract][Full Text] [Related]
11. Cytosolic APX knockdown rice plants sustain photosynthesis by regulation of protein expression related to photochemistry, Calvin cycle and photorespiration. Carvalho FE; Ribeiro CW; Martins MO; Bonifacio A; Staats CC; Andrade CM; Cerqueira JV; Margis-Pinheiro M; Silveira JA Physiol Plant; 2014 Apr; 150(4):632-45. PubMed ID: 24329817 [TBL] [Abstract][Full Text] [Related]
12. Excess copper promotes photoinhibition and modulates the expression of antioxidant-related genes in Zostera muelleri. Buapet P; Mohammadi NS; Pernice M; Kumar M; Kuzhiumparambil U; Ralph PJ Aquat Toxicol; 2019 Feb; 207():91-100. PubMed ID: 30553148 [TBL] [Abstract][Full Text] [Related]
13. RNA-Seq transcriptome analysis of Amaranthus palmeri with differential tolerance to glufosinate herbicide. Salas-Perez RA; Saski CA; Noorai RE; Srivastava SK; Lawton-Rauh AL; Nichols RL; Roma-Burgos N PLoS One; 2018; 13(4):e0195488. PubMed ID: 29672568 [TBL] [Abstract][Full Text] [Related]
14. Rapid recovery of photosynthetic rate following soil water deficit and re-watering in cotton plants (Gossypium herbaceum L.) is related to the stability of the photosystems. Yi XP; Zhang YL; Yao HS; Luo HH; Gou L; Chow WS; Zhang WF J Plant Physiol; 2016 May; 194():23-34. PubMed ID: 26948982 [TBL] [Abstract][Full Text] [Related]
15. Changes in photosynthetic performance and antioxidative strategies during maturation of Norway maple (Acer platanoides L.) leaves. Lepeduš H; Gaća V; Viljevac M; Kovač S; Fulgosi H; Simić D; Jurković V; Cesar V Plant Physiol Biochem; 2011 Apr; 49(4):368-76. PubMed ID: 21334907 [TBL] [Abstract][Full Text] [Related]
16. Exogenous calcium induces tolerance to atrazine stress in Pennisetum seedlings and promotes photosynthetic activity, antioxidant enzymes and psbA gene transcripts. Erinle KO; Jiang Z; Ma B; Li J; Chen Y; Ur-Rehman K; Shahla A; Zhang Y Ecotoxicol Environ Saf; 2016 Oct; 132():403-12. PubMed ID: 27391035 [TBL] [Abstract][Full Text] [Related]
17. Importance of ROS and antioxidant system during the beneficial interactions of mitochondrial metabolism with photosynthetic carbon assimilation. Dinakar C; Abhaypratap V; Yearla SR; Raghavendra AS; Padmasree K Planta; 2010 Jan; 231(2):461-74. PubMed ID: 19943171 [TBL] [Abstract][Full Text] [Related]
18. The effect of glufosinate on nitrogen assimilation at the physiological, biochemical and molecular levels in Phaeodactylum tricornutum. Xie J; Bai X; Li Y; Sun C; Qian H; Fu Z Ecotoxicology; 2014 Oct; 23(8):1430-8. PubMed ID: 25017959 [TBL] [Abstract][Full Text] [Related]
19. Enantioselective effect of glufosinate on the growth of maize seedlings. Zhang Q; Cui Q; Yue S; Lu Z; Zhao M Environ Sci Pollut Res Int; 2019 Jan; 26(1):171-178. PubMed ID: 30387058 [TBL] [Abstract][Full Text] [Related]
20. Target-site mutation associated with glufosinate resistance in Italian ryegrass (Lolium perenne L. ssp. multiflorum). Avila-Garcia WV; Sanchez-Olguin E; Hulting AG; Mallory-Smith C Pest Manag Sci; 2012 Sep; 68(9):1248-54. PubMed ID: 22488875 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]