These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 32372381)

  • 21. Experimental evolution reveals an effective avenue to release catabolite repression via mutations in XylR.
    Sievert C; Nieves LM; Panyon LA; Loeffler T; Morris C; Cartwright RA; Wang X
    Proc Natl Acad Sci U S A; 2017 Jul; 114(28):7349-7354. PubMed ID: 28655843
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolic engineering of Saccharomyces cerevisiae ethanol strains PE-2 and CAT-1 for efficient lignocellulosic fermentation.
    Romaní A; Pereira F; Johansson B; Domingues L
    Bioresour Technol; 2015 Mar; 179():150-158. PubMed ID: 25536512
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sustainable succinic acid production from lignocellulosic hydrolysates by engineered strains of Yarrowia lipolytica at low pH.
    Zhong Y; Gu J; Shang C; Deng J; Liu Y; Cui Z; Lu X; Qi Q
    Bioresour Technol; 2024 Sep; 408():131166. PubMed ID: 39067709
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conversion of glucose-xylose mixtures to pyruvate using a consortium of metabolically engineered
    Maleki N; Safari M; Eiteman MA
    Eng Life Sci; 2018 Jan; 18(1):40-47. PubMed ID: 32624859
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microbial production host selection for converting second-generation feedstocks into bioproducts.
    Rumbold K; van Buijsen HJ; Overkamp KM; van Groenestijn JW; Punt PJ; van der Werf MJ
    Microb Cell Fact; 2009 Dec; 8():64. PubMed ID: 19958560
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Systems Metabolic Engineering of Escherichia coli Improves Coconversion of Lignocellulose-Derived Sugars.
    Kim J; Tremaine M; Grass JA; Purdy HM; Landick R; Kiley PJ; Reed JL
    Biotechnol J; 2019 Sep; 14(9):e1800441. PubMed ID: 31297978
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ethanol production by recombinant Escherichia coli carrying genes from Zymomonas mobilis.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 1991; 28-29():221-36. PubMed ID: 1929364
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simultaneous fermentation of biomass-derived sugars to ethanol by a co-culture of an engineered Escherichia coli and Saccharomyces cerevisiae.
    Wang L; York SW; Ingram LO; Shanmugam KT
    Bioresour Technol; 2019 Feb; 273():269-276. PubMed ID: 30448678
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Performance testing of Zymomonas mobilis metabolically engineered for cofermentation of glucose, xylose, and arabinose.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 2002; 98-100():429-48. PubMed ID: 12018270
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Production of free fatty acids from switchgrass using recombinant Escherichia coli.
    Lee JE; Vadlani PV; Guragain YN; San KY; Min DH
    Biotechnol Prog; 2018 Jan; 34(1):91-98. PubMed ID: 28960895
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ethanol yield and sugar usability in thermophilic ethanol production from lignocellulose hydrolysate by genetically engineered Moorella thermoacetica.
    Rahayu F; Tajima T; Kato J; Kato S; Nakashimada Y
    J Biosci Bioeng; 2020 Feb; 129(2):160-164. PubMed ID: 31506242
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fermentation of biomass-derived glucuronic acid by pet expressing recombinants of E. coli B.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 1997; 63-65():221-41. PubMed ID: 9170247
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of dilute acid pretreatment on the conversion of barley straw with grains to fermentable sugars.
    Yang M; Kuittinen S; Zhang J; Keinänen M; Pappinen A
    Bioresour Technol; 2013 Oct; 146():444-450. PubMed ID: 23955092
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coproduction of xylose, lignosulfonate and ethanol from wheat straw.
    Zhu S; Huang W; Huang W; Wang K; Chen Q; Wu Y
    Bioresour Technol; 2015 Jun; 185():234-9. PubMed ID: 25770471
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Production of xylose from Meranti wood sawdust by dilute acid hydrolysis.
    Rafiqul IS; Sakinah AM; Karim MR
    Appl Biochem Biotechnol; 2014 Sep; 174(2):542-55. PubMed ID: 25082763
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation and Optimization of Organic Acid Pretreatment of Cotton Gin Waste for Enzymatic Hydrolysis and Bioethanol Production.
    Sahu S; Pramanik K
    Appl Biochem Biotechnol; 2018 Dec; 186(4):1047-1060. PubMed ID: 29858754
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improving fermentation performance of recombinant Zymomonas in acetic acid-containing media.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 1998; 70-72():161-72. PubMed ID: 9627380
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bioconversion of distillers' grains hydrolysates to advanced biofuels by an Escherichia coli co-culture.
    Liu F; Wu W; Tran-Gyamfi MB; Jaryenneh JD; Zhuang X; Davis RW
    Microb Cell Fact; 2017 Nov; 16(1):192. PubMed ID: 29121935
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering a synthetic anaerobic respiration for reduction of xylose to xylitol using NADH output of glucose catabolism by Escherichia coli AI21.
    Iverson A; Garza E; Manow R; Wang J; Gao Y; Grayburn S; Zhou S
    BMC Syst Biol; 2016 Apr; 10():31. PubMed ID: 27083875
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The advanced performance of microbial consortium for simultaneous utilization of glucose and xylose to produce lactic acid directly from dilute sulfuric acid pretreated corn stover.
    Sun Y; Li X; Wu L; Li Y; Li F; Xiu Z; Tong Y
    Biotechnol Biofuels; 2021 Dec; 14(1):233. PubMed ID: 34876182
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.