BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 32372388)

  • 1. Aquatic pollution caused by mercury, lead, and cadmium affects cell growth and pigment content of marine microalga, Nannochloropsis oculata.
    Zamani-Ahmadmahmoodi R; Malekabadi MB; Rahimi R; Johari SA
    Environ Monit Assess; 2020 May; 192(6):330. PubMed ID: 32372388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of heavy metals and environmental stress conditions on the production potential of polyunsaturated fatty acids (PUFAs) in indigenous microalgae isolated from the Gulf of Mannar coastal waters.
    Kadam RV; Rani V; Padmavathy P; Shalini R; Selvi MJT; Narsale SA
    Environ Monit Assess; 2024 Feb; 196(3):301. PubMed ID: 38400851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Responses of Raphidocelis subcapitata exposed to Cd and Pb: Mechanisms of toxicity assessed by multiple endpoints.
    Alho LOG; Gebara RC; Paina KA; Sarmento H; Melão MDGG
    Ecotoxicol Environ Saf; 2019 Mar; 169():950-959. PubMed ID: 30597796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effect of heavy metals on the growth of tropical microalga Tetrasermis chuii (Prasinophyceae)].
    Cordero J; Guevara M; Morales E; Lodeiros C
    Rev Biol Trop; 2005; 53(3-4):325-30. PubMed ID: 17354443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of microplastics on the toxicity of chlorpyrifos and mercury on the marine microalgae Rhodomonas lens.
    Pinto EP; Paredes E; Bellas J
    Sci Total Environ; 2023 Jan; 857(Pt 3):159605. PubMed ID: 36273570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Cellular damage of low-dose combined exposure to mercury, lead and cadmium on hippocampal neurons in rats].
    Li ZG; Zhou FK; Yin AM; Gao YY; Jiang X; Liu SS; Zhang YY; Bo DD; Xie J; Jia QY; Feng JG; Feng C; Fan GQ
    Zhonghua Yu Fang Yi Xue Za Zhi; 2018 Oct; 52(10):976-982. PubMed ID: 30392313
    [No Abstract]   [Full Text] [Related]  

  • 7. Ionic and nanoparticulate silver alleviate the toxicity of inorganic mercury in marine microalga Chaetoceros muelleri.
    Mosleminejad N; Ghasemi Z; Johari SA
    Environ Sci Pollut Res Int; 2024 Mar; 31(13):19206-19225. PubMed ID: 38355858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toxicity of lead, cadmium and mercury on embryogenesis, survival, growth and metamorphosis of Meretrix meretrix larvae.
    Wang Q; Liu B; Yang H; Wang X; Lin Z
    Ecotoxicology; 2009 Oct; 18(7):829-37. PubMed ID: 19504184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toxicity and Traces of Hg, Pb and Cd in the Hepatopancreas, Gills and Muscles of Perna viridis from Jakarta Bay, Indonesia.
    Irnidayanti Y
    Pak J Biol Sci; 2015 Feb; 18(2):94-8. PubMed ID: 26364360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of cadmium in the microalga Chlorella sorokiniana: A proteomic study.
    León-Vaz A; Romero LC; Gotor C; León R; Vigara J
    Ecotoxicol Environ Saf; 2021 Jan; 207():111301. PubMed ID: 32949933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heavy metals produce toxicity, oxidative stress and apoptosis in the marine teleost fish SAF-1 cell line.
    Morcillo P; Esteban MÁ; Cuesta A
    Chemosphere; 2016 Feb; 144():225-33. PubMed ID: 26363324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hazards of heavy metal contamination.
    Järup L
    Br Med Bull; 2003; 68():167-82. PubMed ID: 14757716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of carbon nanotubes on the toxicities of copper, cadmium and zinc toward the freshwater microalgae Scenedesmus obliquus.
    Sun C; Li W; Xu Y; Hu N; Ma J; Cao W; Sun S; Hu C; Zhao Y; Huang Q
    Aquat Toxicol; 2020 Jul; 224():105504. PubMed ID: 32450458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of sulphate on the reduction of cadmium toxicity in the microalga Chlamydomonas moewusii.
    Mera R; Torres E; Abalde J
    Ecotoxicol Environ Saf; 2016 Jun; 128():236-45. PubMed ID: 26963118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal chlorophyll fluorescence parameter selection for rapid and sensitive detection of lead toxicity to marine microalgae Nitzschia closterium based on chlorophyll fluorescence technology.
    Gan T; Zhao N; Yin G; Chen M; Wang X; Liu J; Liu W
    J Photochem Photobiol B; 2019 Aug; 197():111551. PubMed ID: 31306954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Response of the freshwater diatom Halamphora veneta (Kützing) Levkov to copper and mercury and its potential for bioassessment of heavy metal toxicity in aquatic habitats.
    Mu W; Jia K; Liu Y; Pan X; Fan Y
    Environ Sci Pollut Res Int; 2017 Dec; 24(34):26375-26386. PubMed ID: 28944446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detoxification of toxic heavy metals by marine bacteria highly resistant to mercury.
    De J; Ramaiah N; Vardanyan L
    Mar Biotechnol (NY); 2008; 10(4):471-7. PubMed ID: 18288535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using multiple endpoints to assess the toxicity of cadmium and cobalt for chlorophycean Raphidocelis subcapitata.
    Reis LLD; Alho LOG; Abreu CB; Melão MDGG
    Ecotoxicol Environ Saf; 2021 Jan; 208():111628. PubMed ID: 33396148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Occurrence, physiologic effects, and toxicity of heavy metals--arsenic, cadmium, lead, mercury, and zinc--in marine biota: an annotated literature collection.
    Corrill LS; Huff JE
    Environ Health Perspect; 1976 Dec; 18():181-3. PubMed ID: 801133
    [No Abstract]   [Full Text] [Related]  

  • 20. Potential Protective Effects of Spirulina (
    Mallamaci R; Storelli MM; Barbarossa A; Messina G; Valenzano A; Meleleo D
    Int J Mol Sci; 2023 Dec; 24(23):. PubMed ID: 38069399
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.