BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

646 related articles for article (PubMed ID: 32372567)

  • 1. Segregating patterns of copy number variations in extended autism spectrum disorder (ASD) pedigrees.
    Woodbury-Smith M; Zarrei M; Wei J; Thiruvahindrapuram B; O'Connor I; Paterson AD; Yuen RKC; Dastan J; Stavropoulos DJ; Howe JL; Thompson A; Parlier M; Fernandez B; Piven J; Anagnostou E; Scherer SW; Vieland VJ; Szatmari P
    Am J Med Genet B Neuropsychiatr Genet; 2020 Jul; 183(5):268-276. PubMed ID: 32372567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of common genetic variation and rare CNVs in the Australian Autism Biobank.
    Yap CX; Alvares GA; Henders AK; Lin T; Wallace L; Farrelly A; McLaren T; Berry J; Vinkhuyzen AAE; Trzaskowski M; Zeng J; Yang Y; Cleary D; Grove R; Hafekost C; Harun A; Holdsworth H; Jellett R; Khan F; Lawson L; Leslie J; Levis Frenk M; Masi A; Mathew NE; Muniandy M; Nothard M; Visscher PM; Dawson PA; Dissanayake C; Eapen V; Heussler HS; Whitehouse AJO; Wray NR; Gratten J
    Mol Autism; 2021 Feb; 12(1):12. PubMed ID: 33568206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A genome-wide linkage study of autism spectrum disorder and the broad autism phenotype in extended pedigrees.
    Woodbury-Smith M; Paterson AD; O'Connor I; Zarrei M; Yuen RKC; Howe JL; Thompson A; Parlier M; Fernandez B; Piven J; Scherer SW; Vieland V; Szatmari P
    J Neurodev Disord; 2018 Jun; 10(1):20. PubMed ID: 29890955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using extended pedigrees to identify novel autism spectrum disorder (ASD) candidate genes.
    Woodbury-Smith M; Paterson AD; Thiruvahindrapduram B; Lionel AC; Marshall CR; Merico D; Fernandez BA; Duku E; Sutcliffe JS; O'Conner I; Chrysler C; Thompson A; Kellam B; Tammimies K; Walker S; Yuen RK; Uddin M; Howe JL; Parlier M; Whitten K; Szatmari P; Vieland VJ; Piven J; Scherer SW
    Hum Genet; 2015 Feb; 134(2):191-201. PubMed ID: 25432440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide analysis of copy number variations identifies PARK2 as a candidate gene for autism spectrum disorder.
    Yin CL; Chen HI; Li LH; Chien YL; Liao HM; Chou MC; Chou WJ; Tsai WC; Chiu YN; Wu YY; Lo CZ; Wu JY; Chen YT; Gau SS
    Mol Autism; 2016; 7():23. PubMed ID: 27042285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predictive impact of rare genomic copy number variations in siblings of individuals with autism spectrum disorders.
    D'Abate L; Walker S; Yuen RKC; Tammimies K; Buchanan JA; Davies RW; Thiruvahindrapuram B; Wei J; Brian J; Bryson SE; Dobkins K; Howe J; Landa R; Leef J; Messinger D; Ozonoff S; Smith IM; Stone WL; Warren ZE; Young G; Zwaigenbaum L; Scherer SW
    Nat Commun; 2019 Dec; 10(1):5519. PubMed ID: 31801954
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rare Inherited and De Novo CNVs Reveal Complex Contributions to ASD Risk in Multiplex Families.
    Leppa VM; Kravitz SN; Martin CL; Andrieux J; Le Caignec C; Martin-Coignard D; DyBuncio C; Sanders SJ; Lowe JK; Cantor RM; Geschwind DH
    Am J Hum Genet; 2016 Sep; 99(3):540-554. PubMed ID: 27569545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An integrated analysis of rare CNV and exome variation in Autism Spectrum Disorder using the Infinium PsychArray.
    Bacchelli E; Cameli C; Viggiano M; Igliozzi R; Mancini A; Tancredi R; Battaglia A; Maestrini E
    Sci Rep; 2020 Feb; 10(1):3198. PubMed ID: 32081867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High resolution analysis of rare copy number variants in patients with autism spectrum disorder from Taiwan.
    Chen CH; Chen HI; Chien WH; Li LH; Wu YY; Chiu YN; Tsai WC; Gau SS
    Sci Rep; 2017 Sep; 7(1):11919. PubMed ID: 28931914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rare copy number variations affecting the synaptic gene DMXL2 in neurodevelopmental disorders.
    Costain G; Walker S; Argiropoulos B; Baribeau DA; Bassett AS; Boot E; Devriendt K; Kellam B; Marshall CR; Prasad A; Serrano MA; Stavropoulos DJ; Twede H; Vermeesch JR; Vorstman JAS; Scherer SW
    J Neurodev Disord; 2019 Feb; 11(1):3. PubMed ID: 30732576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic landscapes of Chinese sporadic autism spectrum disorders revealed by whole-genome sequencing.
    Wu J; Yu P; Jin X; Xu X; Li J; Li Z; Wang M; Wang T; Wu X; Jiang Y; Cai W; Mei J; Min Q; Xu Q; Zhou B; Guo H; Wang P; Zhou W; Hu Z; Li Y; Cai T; Wang Y; Xia K; Jiang YH; Sun ZS
    J Genet Genomics; 2018 Oct; 45(10):527-538. PubMed ID: 30392784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-resolution SNP genotyping platform identified recurrent and novel CNVs in autism multiplex families.
    AlAyadhi LY; Hashmi JA; Iqbal M; Albalawi AM; Samman MI; Elamin NE; Bashir S; Basit S
    Neuroscience; 2016 Dec; 339():561-570. PubMed ID: 27771533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diagnostic efficacy and new variants in isolated and complex autism spectrum disorder using molecular karyotyping.
    Lovrečić L; Rajar P; Volk M; Bertok S; Gnidovec Stražišar B; Osredkar D; Jekovec Vrhovšek M; Peterlin B
    J Appl Genet; 2018 May; 59(2):179-185. PubMed ID: 29564645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The landscape of copy number variations in Finnish families with autism spectrum disorders.
    Kanduri C; Kantojärvi K; Salo PM; Vanhala R; Buck G; Blancher C; Lähdesmäki H; Järvelä I
    Autism Res; 2016 Jan; 9(1):9-16. PubMed ID: 26052927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Whole genome sequencing and variant discovery in the ASPIRE autism spectrum disorder cohort.
    Callaghan DB; Rogic S; Tan PPC; Calli K; Qiao Y; Baldwin R; Jacobson M; Belmadani M; Holmes N; Yu C; Li Y; Li Y; Kurtzke FE; Kuzeljevic B; Yu AY; Hudson M; Mcaughton AJM; Xu Y; Dionne-Laporte A; Girard S; Liang P; Separovic ER; Liu X; Rouleau G; Pavlidis P; Lewis MES
    Clin Genet; 2019 Sep; 96(3):199-206. PubMed ID: 31038196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of rare recurrent copy number variants in high-risk autism families and their prevalence in a large ASD population.
    Matsunami N; Hadley D; Hensel CH; Christensen GB; Kim C; Frackelton E; Thomas K; da Silva RP; Stevens J; Baird L; Otterud B; Ho K; Varvil T; Leppert T; Lambert CG; Leppert M; Hakonarson H
    PLoS One; 2013; 8(1):e52239. PubMed ID: 23341896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Progress in the genetics of autism spectrum disorder.
    Woodbury-Smith M; Scherer SW
    Dev Med Child Neurol; 2018 May; 60(5):445-451. PubMed ID: 29574884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neurexin gene family variants as risk factors for autism spectrum disorder.
    Wang J; Gong J; Li L; Chen Y; Liu L; Gu H; Luo X; Hou F; Zhang J; Song R
    Autism Res; 2018 Jan; 11(1):37-43. PubMed ID: 29045040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Copy Number Variation and Clinical Outcomes in Patients With Germline PTEN Mutations.
    Yehia L; Seyfi M; Niestroj LM; Padmanabhan R; Ni Y; Frazier TW; Lal D; Eng C
    JAMA Netw Open; 2020 Jan; 3(1):e1920415. PubMed ID: 32003824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Social Responsiveness Scale-aided analysis of the clinical impact of copy number variations in autism.
    van Daalen E; Kemner C; Verbeek NE; van der Zwaag B; Dijkhuizen T; Rump P; Houben R; van 't Slot R; de Jonge MV; Staal WG; Beemer FA; Vorstman JA; Burbach JP; van Amstel HK; Hochstenbach R; Brilstra EH; Poot M
    Neurogenetics; 2011 Nov; 12(4):315-23. PubMed ID: 21837366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.