These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 32372650)

  • 1. Multiple site-directed mutagenesis via simple cloning by prolonged overlap extension.
    Hejlesen R; Füchtbauer EM
    Biotechniques; 2020 Jun; 68(6):345-348. PubMed ID: 32372650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR-Directed Gene Editing Catalyzes Precise Gene Segment Replacement
    Sansbury BM; Wagner AM; Tarcic G; Barth S; Nitzan E; Goldfus R; Vidne M; Kmiec EB
    CRISPR J; 2019 Apr; 2():121-132. PubMed ID: 30998096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New Additions to the CRISPR Toolbox: CRISPR-
    Shola DTN; Yang C; Kewaldar VS; Kar P; Bustos V
    CRISPR J; 2020 Apr; 3(2):109-122. PubMed ID: 32315232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR/Cas9-assisted ssDNA recombineering for site-directed mutagenesis and saturation mutagenesis of plasmid-encoded genes.
    Zhang G; Wang J; Li Y; Shang G
    Biotechnol Lett; 2023 Jun; 45(5-6):629-637. PubMed ID: 36930400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TALEN- and CRISPR-enhanced DNA homologous recombination for gene editing in zebrafish.
    Zhang Y; Huang H; Zhang B; Lin S
    Methods Cell Biol; 2016; 135():107-20. PubMed ID: 27443922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Seamless Ligation Cloning Extract (SLiCE) Method Using Cell Lysates from Laboratory Escherichia coli Strains and its Application to SLiP Site-Directed Mutagenesis.
    Motohashi K
    Methods Mol Biol; 2017; 1498():349-357. PubMed ID: 27709587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro CRISPR-Cas9-mediated efficient Ad5 vector modification.
    Tang L; Gong M; Zhang P
    Biochem Biophys Res Commun; 2016 May; 474(2):395-399. PubMed ID: 27125457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Cloning-Free Method for CRISPR/Cas9-Mediated Genome Editing in Fission Yeast.
    Zhang XR; He JB; Wang YZ; Du LL
    G3 (Bethesda); 2018 May; 8(6):2067-2077. PubMed ID: 29703785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR-Mediated Base Editing without DNA Double-Strand Breaks.
    Plosky BS
    Mol Cell; 2016 May; 62(4):477-8. PubMed ID: 27203175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmid-Based CRISPR-Cas9 Gene Editing in Multiple
    Lombardi L; Oliveira-Pacheco J; Butler G
    mSphere; 2019 Mar; 4(2):. PubMed ID: 30867327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simple and efficient seamless DNA cloning method using SLiCE from Escherichia coli laboratory strains and its application to SLiP site-directed mutagenesis.
    Motohashi K
    BMC Biotechnol; 2015 Jun; 15():47. PubMed ID: 26037246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing CRISPR/Cas9-mediated homology-directed repair in mammalian cells by expressing Saccharomyces cerevisiae Rad52.
    Shao S; Ren C; Liu Z; Bai Y; Chen Z; Wei Z; Wang X; Zhang Z; Xu K
    Int J Biochem Cell Biol; 2017 Nov; 92():43-52. PubMed ID: 28928041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR/Cas9-mediated genome editing of Shewanella oneidensis MR-1 using a broad host-range pBBR1-based plasmid.
    Suzuki Y; Kouzuma A; Watanabe K
    J Gen Appl Microbiol; 2020 Apr; 66(1):41-45. PubMed ID: 31447475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Harnessing the native type I-B CRISPR-Cas for genome editing in a polyploid archaeon.
    Cheng F; Gong L; Zhao D; Yang H; Zhou J; Li M; Xiang H
    J Genet Genomics; 2017 Nov; 44(11):541-548. PubMed ID: 29169919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simple and effective gap-repair cloning using short tracts of flanking homology in fission yeast.
    Matsuo Y; Kishimoto H; Horiuchi T; Tanae K; Kawamukai M
    Biosci Biotechnol Biochem; 2010; 74(3):685-9. PubMed ID: 20208336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combi-CRISPR: combination of NHEJ and HDR provides efficient and precise plasmid-based knock-ins in mice and rats.
    Yoshimi K; Oka Y; Miyasaka Y; Kotani Y; Yasumura M; Uno Y; Hattori K; Tanigawa A; Sato M; Oya M; Nakamura K; Matsushita N; Kobayashi K; Mashimo T
    Hum Genet; 2021 Feb; 140(2):277-287. PubMed ID: 32617796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Straightforward Delivery of Linearized Double-Stranded DNA Encoding sgRNA and Donor DNA for the Generation of Single Nucleotide Variants Based on the CRISPR/Cas9 System.
    Jun S; Lim H; Jang H; Lee W; Ahn J; Lee JH; Bang D
    ACS Synth Biol; 2018 Jul; 7(7):1651-1659. PubMed ID: 29924933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of the Cas9 Orthologs from Streptococcus thermophilus and Staphylococcus aureus for Non-Homologous End-Joining Mediated Site-Specific Mutagenesis in Arabidopsis thaliana.
    Steinert J; Schmidt C; Puchta H
    Methods Mol Biol; 2017; 1669():365-376. PubMed ID: 28936671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insertional Mutagenesis by CRISPR/Cas9 Ribonucleoprotein Gene Editing in Cells Targeted for Point Mutation Repair Directed by Short Single-Stranded DNA Oligonucleotides.
    Rivera-Torres N; Banas K; Bialk P; Bloh KM; Kmiec EB
    PLoS One; 2017; 12(1):e0169350. PubMed ID: 28052104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Screening of CRISPR-Cas9-generated point mutant mice using MiSeq and locked nucleic acid probe PCR.
    Vasu K; Fox PL
    STAR Protoc; 2021 Dec; 2(4):100785. PubMed ID: 34585153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.