BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 32372713)

  • 1. Modeling and simulation of spatial-temporal calcium distribution in T lymphocyte cell by using a reaction-diffusion equation.
    Naik PA; Zu J
    J Bioinform Comput Biol; 2020 Apr; 18(2):2050013. PubMed ID: 32372713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Comprehensive Fuzzy Model for Understanding Neuronal Calcium Distribution in Presence of VGCC, Na
    Jha BK; Bhattacharyya R
    Cell Biochem Biophys; 2024 May; ():. PubMed ID: 38743137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical analysis of the effect of T-tubule location on calcium transient in ventricular myocytes.
    George UZ; Wang J; Yu Z
    Biomed Mater Eng; 2014; 24(1):1299-306. PubMed ID: 24212025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mathematical Modeling of Calcium Oscillatory Patterns in a Neuron.
    Dave DD; Jha BK
    Interdiscip Sci; 2021 Mar; 13(1):12-24. PubMed ID: 33170431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling effects of L-type ca(2+) current and na(+)-ca(2+) exchanger on ca(2+) trigger flux in rabbit myocytes with realistic T-tubule geometries.
    Kekenes-Huskey PM; Cheng Y; Hake JE; Sachse FB; Bridge JH; Holst MJ; McCammon JA; McCulloch AD; Michailova AP
    Front Physiol; 2012; 3():351. PubMed ID: 23060801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mathematical modelling of human P2X-mediated plasma membrane electrophysiology and calcium dynamics in microglia.
    Poshtkohi A; Wade J; McDaid L; Liu J; Dallas M; Bithell A
    PLoS Comput Biol; 2021 Nov; 17(11):e1009520. PubMed ID: 34723961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Depolarization-induced calcium responses in sympathetic neurons: relative contributions from Ca2+ entry, extrusion, ER/mitochondrial Ca2+ uptake and release, and Ca2+ buffering.
    Patterson M; Sneyd J; Friel DD
    J Gen Physiol; 2007 Jan; 129(1):29-56. PubMed ID: 17190902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the roles of Ca2+ diffusion, Ca2+ buffers, and the endoplasmic reticulum in IP3-induced Ca2+ waves.
    Jafri MS; Keizer J
    Biophys J; 1995 Nov; 69(5):2139-53. PubMed ID: 8580358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatio temporal interdependent calcium and buffer dynamics regulating DAG in a hepatocyte cell due to obesity.
    Mishra V; Adlakha N
    J Bioenerg Biomembr; 2023 Aug; 55(4):249-266. PubMed ID: 37460636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Voltage-dependent calcium currents and cytosolic calcium in equine airway myocytes.
    Fleischmann BK; Wang YX; Pring M; Kotlikoff MI
    J Physiol; 1996 Apr; 492 ( Pt 2)(Pt 2):347-58. PubMed ID: 9019534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of rapid buffers on Ca2+ diffusion and Ca2+ oscillations.
    Wagner J; Keizer J
    Biophys J; 1994 Jul; 67(1):447-56. PubMed ID: 7919018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences in calcium homeostasis between retinal rod and cone photoreceptors revealed by the effects of voltage on the cGMP-gated conductance in intact cells.
    Miller JL; Korenbrot JI
    J Gen Physiol; 1994 Nov; 104(5):909-40. PubMed ID: 7876828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stochastic simulation of a single inositol 1,4,5-trisphosphate-sensitive Ca2+ channel reveals repetitive openings during 'blip-like' Ca2+ transients.
    Swillens S; Champeil P; Combettes L; Dupont G
    Cell Calcium; 1998 May; 23(5):291-302. PubMed ID: 9681192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constitutive NO synthase regulates the Na+/Ca2+ exchanger in human T cells: role of [Ca2+]i and tyrosine phosphorylation.
    Kiang JG; McClain DE; Warke VG; Krishnan S; Tsokos GC
    J Cell Biochem; 2003 Aug; 89(5):1030-43. PubMed ID: 12874836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Voltage-dependent modulation of ion binding and translocation in the cardiac Na(+)-Ca2+ exchange system.
    Khananshvili D
    J Biol Chem; 1991 Jul; 266(21):13764-9. PubMed ID: 1906884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model for dendritic Ca2+ accumulation in hippocampal pyramidal neurons based on fluorescence imaging measurements.
    Jaffe DB; Ross WN; Lisman JE; Lasser-Ross N; Miyakawa H; Johnston D
    J Neurophysiol; 1994 Mar; 71(3):1065-77. PubMed ID: 8201402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning outer segment Ca2+ homeostasis to phototransduction in rods and cones.
    Korenbrot JI; Rebrik TI
    Adv Exp Med Biol; 2002; 514():179-203. PubMed ID: 12596922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Significance of Na/Ca exchange for Ca2+ buffering and electrical activity in mouse pancreatic beta-cells.
    Gall D; Gromada J; Susa I; Rorsman P; Herchuelz A; Bokvist K
    Biophys J; 1999 Apr; 76(4):2018-28. PubMed ID: 10096898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium-dependent potentiation of store-operated calcium channels in T lymphocytes.
    Zweifach A; Lewis RS
    J Gen Physiol; 1996 May; 107(5):597-610. PubMed ID: 8740373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A voltage-operable current is involved in Ca2+ entry in human lymphocytes whereas ICRAC has no apparent role.
    Densmore JJ; Haverstick DM; Szabo G; Gray LS
    Am J Physiol; 1996 Nov; 271(5 Pt 1):C1494-503. PubMed ID: 8944632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.