BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 32372713)

  • 21. A mathematical model of Ca2+ dynamics in rat mesenteric smooth muscle cell: agonist and NO stimulation.
    Kapela A; Bezerianos A; Tsoukias NM
    J Theor Biol; 2008 Jul; 253(2):238-60. PubMed ID: 18423672
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of mitochondria for Ca2+ refilling of the endoplasmic reticulum.
    Malli R; Frieden M; Trenker M; Graier WF
    J Biol Chem; 2005 Apr; 280(13):12114-22. PubMed ID: 15659398
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Non-voltage-gated L-type Ca2+ channels in human T cells: pharmacology and molecular characterization of the major alpha pore-forming and auxiliary beta-subunits.
    Stokes L; Gordon J; Grafton G
    J Biol Chem; 2004 May; 279(19):19566-73. PubMed ID: 14981074
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Na(+)-dependent Ca2+ exchanger generates the sustained increase in intracellular Ca2+ required for T cell activation.
    Wacholtz MC; Cragoe EJ; Lipsky PE
    J Immunol; 1992 Sep; 149(6):1912-20. PubMed ID: 1387665
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Endogenous and exogenous Ca2+ buffers differentially modulate Ca2+-dependent inactivation of Ca(v)2.1 Ca2+ channels.
    Kreiner L; Lee A
    J Biol Chem; 2006 Feb; 281(8):4691-8. PubMed ID: 16373336
    [TBL] [Abstract][Full Text] [Related]  

  • 26. External bioenergy-induced increases in intracellular free calcium concentrations are mediated by Na+/Ca2+ exchanger and L-type calcium channel.
    Kiang JG; Ives JA; Jonas WB
    Mol Cell Biochem; 2005 Mar; 271(1-2):51-9. PubMed ID: 15881655
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Linearized buffered Ca2+ diffusion in microdomains and its implications for calculation of [Ca2+] at the mouth of a calcium channel.
    Naraghi M; Neher E
    J Neurosci; 1997 Sep; 17(18):6961-73. PubMed ID: 9278532
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiscale modeling of calcium dynamics in ventricular myocytes with realistic transverse tubules.
    Yu Z; Yao G; Hoshijima M; Michailova A; Holst M
    IEEE Trans Biomed Eng; 2011 Oct; 58(10):2947-51. PubMed ID: 21632291
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The spatial relationship between Ca2+ channels and Ca2+-activated channels and the function of Ca2+-buffering in avian sensory neurons.
    Ward SM; Kenyon JL
    Cell Calcium; 2000 Oct; 28(4):233-46. PubMed ID: 11032779
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intrinsic cytosolic calcium buffering properties of single rat cardiac myocytes.
    Berlin JR; Bassani JW; Bers DM
    Biophys J; 1994 Oct; 67(4):1775-87. PubMed ID: 7819510
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ca2+ entry via P/Q-type Ca2+ channels and the Na+/Ca2+ exchanger in rat and human neocortical synaptosomes.
    Fink K; Meder WP; Clusmann H; Göthert M
    Naunyn Schmiedebergs Arch Pharmacol; 2002 Nov; 366(5):458-63. PubMed ID: 12382075
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simplified model of cytosolic Ca2+ dynamics in the presence of one or several clusters of Ca2+ -release channels.
    Solovey G; Fraiman D; Pando B; Ponce Dawson S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 1):041915. PubMed ID: 18999463
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rapid interaction of FRCRCFa with the cytosolic side of the cardiac sarcolemma Na(+)-Ca2+ exchanger blocks the ion transport without preventing the binding of either sodium or calcium.
    Khananshvili D; Baazov D; Weil-Maslansky E; Shaulov G; Mester B
    Biochemistry; 1996 Dec; 35(49):15933-40. PubMed ID: 8961960
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simulation of Ca2+-activated Cl- current of cardiomyocytes in rabbit pulmonary vein: implications of subsarcolemmal Ca2+ dynamics.
    Leem CH; Kim WT; Ha JM; Lee YJ; Seong HC; Choe H; Jang YJ; Youm JB; Earm YE
    Philos Trans A Math Phys Eng Sci; 2006 May; 364(1842):1223-43. PubMed ID: 16608705
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intracellular Ca2+ oscillations and membrane potential fluctuations in intact human T lymphocytes: role of K+ channels in Ca2+ signaling.
    Verheugen JA; Vijverberg HP
    Cell Calcium; 1995 Apr; 17(4):287-300. PubMed ID: 7664316
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling of Ca2+ flux in pancreatic beta-cells: role of the plasma membrane and intracellular stores.
    Fridlyand LE; Tamarina N; Philipson LH
    Am J Physiol Endocrinol Metab; 2003 Jul; 285(1):E138-54. PubMed ID: 12644446
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synaptic structural complexity as a factor enhancing probability of calcium-mediated transmitter release.
    Cooper RL; Winslow JL; Govind CK; Atwood HL
    J Neurophysiol; 1996 Jun; 75(6):2451-66. PubMed ID: 8793756
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mitochondria buffer non-toxic calcium loads and release calcium through the mitochondrial permeability transition pore and sodium/calcium exchanger in rat basal forebrain neurons.
    Murchison D; Griffith WH
    Brain Res; 2000 Jan; 854(1-2):139-51. PubMed ID: 10784115
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inhibition of store-operated Ca2+ entry channels and K+ channels by caffeic acid phenethylester in T lymphocytes.
    Nam JH; Shin DH; Zheng H; Kang JS; Kim WK; Kim SJ
    Eur J Pharmacol; 2009 Jun; 612(1-3):153-60. PubMed ID: 19371740
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification and functional characterization of voltage-dependent calcium channels in T lymphocytes.
    Kotturi MF; Carlow DA; Lee JC; Ziltener HJ; Jefferies WA
    J Biol Chem; 2003 Nov; 278(47):46949-60. PubMed ID: 12954628
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.