These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 32372714)
1. Pippin: A random forest-based method for identifying presynaptic and postsynaptic neurotoxins. Li P; Zhang H; Zhao X; Jia C; Li F; Song J J Bioinform Comput Biol; 2020 Apr; 18(2):2050008. PubMed ID: 32372714 [TBL] [Abstract][Full Text] [Related]
2. Analysis and prediction of presynaptic and postsynaptic neurotoxins by Chou's general pseudo amino acid composition and motif features. Mei J; Zhao J J Theor Biol; 2018 Jun; 447():147-153. PubMed ID: 29596863 [TBL] [Abstract][Full Text] [Related]
3. Prediction of presynaptic and postsynaptic neurotoxins by combining various Chou's pseudo components. Huo H; Li T; Wang S; Lv Y; Zuo Y; Yang L Sci Rep; 2017 Jul; 7(1):5827. PubMed ID: 28724993 [TBL] [Abstract][Full Text] [Related]
4. Prediction of presynaptic and postsynaptic neurotoxins by the increment of diversity. Yang L; Li Q Toxicol In Vitro; 2009 Mar; 23(2):346-8. PubMed ID: 19138734 [TBL] [Abstract][Full Text] [Related]
5. Utilize a few features to classify presynaptic and postsynaptic neurotoxins. Wan H; Liu Q; Ju Y Comput Biol Med; 2023 Jan; 152():106380. PubMed ID: 36473343 [TBL] [Abstract][Full Text] [Related]
6. Predicting Presynaptic and Postsynaptic Neurotoxins by Developing Feature Selection Technique. Tang H; Yang Y; Zhang C; Chen R; Huang P; Duan C; Zou P Biomed Res Int; 2017; 2017():3267325. PubMed ID: 28303250 [TBL] [Abstract][Full Text] [Related]
7. Prediction of presynaptic and postsynaptic neurotoxins based on feature extraction. Zhu W; Guo Y; Zou Q Math Biosci Eng; 2021 Jun; 18(5):5943-5958. PubMed ID: 34517517 [TBL] [Abstract][Full Text] [Related]
8. Using Reduced Amino Acid Alphabet and Biological Properties to Analyze and Predict Animal Neurotoxin Protein. Yu Y; Wang S; Wang Y; Cao Y; Yu C; Pan Y; Su D; Lu Q; Zuo Y; Yang L Curr Drug Metab; 2020; 21(10):810-817. PubMed ID: 32433000 [TBL] [Abstract][Full Text] [Related]
9. UMPred-FRL: A New Approach for Accurate Prediction of Umami Peptides Using Feature Representation Learning. Charoenkwan P; Nantasenamat C; Hasan MM; Moni MA; Manavalan B; Shoombuatong W Int J Mol Sci; 2021 Dec; 22(23):. PubMed ID: 34884927 [TBL] [Abstract][Full Text] [Related]
10. Development and validation of consensus machine learning-based models for the prediction of novel small molecules as potential anti-tubercular agents. Wani MA; Roy KK Mol Divers; 2022 Jun; 26(3):1345-1356. PubMed ID: 34110578 [TBL] [Abstract][Full Text] [Related]
11. The predictive performance of short-linear motif features in the prediction of calmodulin-binding proteins. Li Y; Maleki M; Carruthers NJ; Stemmer PM; Ngom A; Rueda L BMC Bioinformatics; 2018 Nov; 19(Suppl 14):410. PubMed ID: 30453876 [TBL] [Abstract][Full Text] [Related]
12. CRlncRC: a machine learning-based method for cancer-related long noncoding RNA identification using integrated features. Zhang X; Wang J; Li J; Chen W; Liu C BMC Med Genomics; 2018 Dec; 11(Suppl 6):120. PubMed ID: 30598114 [TBL] [Abstract][Full Text] [Related]
13. Prediction of Skin Disease Using Ensemble Data Mining Techniques and Feature Selection Method-a Comparative Study. Verma AK; Pal S; Kumar S Appl Biochem Biotechnol; 2020 Feb; 190(2):341-359. PubMed ID: 31350666 [TBL] [Abstract][Full Text] [Related]
14. PDRLGB: precise DNA-binding residue prediction using a light gradient boosting machine. Deng L; Pan J; Xu X; Yang W; Liu C; Liu H BMC Bioinformatics; 2018 Dec; 19(Suppl 19):522. PubMed ID: 30598073 [TBL] [Abstract][Full Text] [Related]
15. Fast Prediction of Protein Methylation Sites Using a Sequence-Based Feature Selection Technique. Wei L; Xing P; Shi G; Ji Z; Zou Q IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1264-1273. PubMed ID: 28222000 [TBL] [Abstract][Full Text] [Related]
16. NeuroPred-FRL: an interpretable prediction model for identifying neuropeptide using feature representation learning. Hasan MM; Alam MA; Shoombuatong W; Deng HW; Manavalan B; Kurata H Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 33975333 [TBL] [Abstract][Full Text] [Related]
17. iTTCA-RF: a random forest predictor for tumor T cell antigens. Jiao S; Zou Q; Guo H; Shi L J Transl Med; 2021 Oct; 19(1):449. PubMed ID: 34706730 [TBL] [Abstract][Full Text] [Related]
18. HMMPred: Accurate Prediction of DNA-Binding Proteins Based on HMM Profiles and XGBoost Feature Selection. Sang X; Xiao W; Zheng H; Yang Y; Liu T Comput Math Methods Med; 2020; 2020():1384749. PubMed ID: 32300371 [TBL] [Abstract][Full Text] [Related]
19. A Hybrid Ensemble Algorithm Combining AdaBoost and Genetic Algorithm for Cancer Classification with Gene Expression Data. Lu H; Gao H; Ye M; Wang X IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(3):863-870. PubMed ID: 31722484 [TBL] [Abstract][Full Text] [Related]
20. Comprehensive assessment of machine learning-based methods for predicting antimicrobial peptides. Xu J; Li F; Leier A; Xiang D; Shen HH; Marquez Lago TT; Li J; Yu DJ; Song J Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33774670 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]