BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

401 related articles for article (PubMed ID: 32372940)

  • 1. Generalize Robot Learning From Demonstration to Variant Scenarios With Evolutionary Policy Gradient.
    Cao J; Liu W; Liu Y; Yang J
    Front Neurorobot; 2020; 14():21. PubMed ID: 32372940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human-robot skills transfer interfaces for a flexible surgical robot.
    Calinon S; Bruno D; Malekzadeh MS; Nanayakkara T; Caldwell DG
    Comput Methods Programs Biomed; 2014 Sep; 116(2):81-96. PubMed ID: 24491285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A reinforcement learning algorithm acquires demonstration from the training agent by dividing the task space.
    Zu L; He X; Yang J; Liu L; Wang W
    Neural Netw; 2023 Jul; 164():419-427. PubMed ID: 37187108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robot Motor Skill Transfer With Alternate Learning in Two Spaces.
    Fu J; Teng X; Cao C; Ju Z; Lou P
    IEEE Trans Neural Netw Learn Syst; 2021 Oct; 32(10):4553-4564. PubMed ID: 32970599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning With Stochastic Guidance for Robot Navigation.
    Xie L; Miao Y; Wang S; Blunsom P; Wang Z; Chen C; Markham A; Trigoni N
    IEEE Trans Neural Netw Learn Syst; 2021 Jan; 32(1):166-176. PubMed ID: 32203029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robot grasping method optimization using improved deep deterministic policy gradient algorithm of deep reinforcement learning.
    Zhang H; Wang F; Wang J; Cui B
    Rev Sci Instrum; 2021 Feb; 92(2):025114. PubMed ID: 33648152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Task-Learning Strategy for Robotic Assembly Tasks from Human Demonstrations.
    Ding G; Liu Y; Zang X; Zhang X; Liu G; Zhao J
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32992888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Multitasking-Oriented Robot Arm Motion Planning Scheme Based on Deep Reinforcement Learning and Twin Synchro-Control.
    Liu C; Gao J; Bi Y; Shi X; Tian D
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32575907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Reinforcement Learning-Based Automatic Exploration for Navigation in Unknown Environment.
    Li H; Zhang Q; Zhao D
    IEEE Trans Neural Netw Learn Syst; 2020 Jun; 31(6):2064-2076. PubMed ID: 31398138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An End-to-End Deep Reinforcement Learning-Based Intelligent Agent Capable of Autonomous Exploration in Unknown Environments.
    Ramezani Dooraki A; Lee DJ
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30360397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapidly Learning Generalizable and Robot-Agnostic Tool-Use Skills for a Wide Range of Tasks.
    Qin M; Brawer J; Scassellati B
    Front Robot AI; 2021; 8():726463. PubMed ID: 34970599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ASAP-CORPS: A Semi-Autonomous Platform for COntact-Rich Precision Surgery.
    Balakuntala MV; Gonzalez GT; Wachs JP; Voyles RM
    Mil Med; 2023 Nov; 188(Suppl 6):412-419. PubMed ID: 37948233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep imitation learning for 3D navigation tasks.
    Hussein A; Elyan E; Gaber MM; Jayne C
    Neural Comput Appl; 2018; 29(7):389-404. PubMed ID: 29576690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning-based control approaches for service robots on cloth manipulation and dressing assistance: a comprehensive review.
    Nocentini O; Kim J; Bashir ZM; Cavallo F
    J Neuroeng Rehabil; 2022 Nov; 19(1):117. PubMed ID: 36329473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-Channel Interactive Reinforcement Learning for Sequential Tasks.
    Koert D; Kircher M; Salikutluk V; D'Eramo C; Peters J
    Front Robot AI; 2020; 7():97. PubMed ID: 33501264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Improvement of Robot Stiffness-Adaptive Skill Primitive Generalization Using the Surface Electromyography in Human-Robot Collaboration.
    Guan Y; Wang N; Yang C
    Front Neurosci; 2021; 15():694914. PubMed ID: 34594181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distributed Non-Communicating Multi-Robot Collision Avoidance via Map-Based Deep Reinforcement Learning.
    Chen G; Yao S; Ma J; Pan L; Chen Y; Xu P; Ji J; Chen X
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32867080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating exploration for deep reinforcement learning of concentric tube robot control.
    Iyengar K; Dwyer G; Stoyanov D
    Int J Comput Assist Radiol Surg; 2020 Jul; 15(7):1157-1165. PubMed ID: 32506349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Research on Robot Screwing Skill Method Based on Demonstration Learning.
    Li F; Bai Y; Zhao M; Fu T; Men Y; Song R
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38202883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TAG: Teacher-Advice Mechanism With Gaussian Process for Reinforcement Learning.
    Lin K; Li D; Li Y; Chen S; Liu Q; Gao J; Jin Y; Gong L
    IEEE Trans Neural Netw Learn Syst; 2023 Apr; PP():. PubMed ID: 37023165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.