These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 32373136)

  • 1. Does Molecular and Structural Evolution Shape the Speedy Grass Stomata?
    Wang Y; Chen ZH
    Front Plant Sci; 2020; 11():333. PubMed ID: 32373136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stomatal development in the grasses: lessons from models and crops (and crop models).
    McKown KH; Bergmann DC
    New Phytol; 2020 Sep; 227(6):1636-1648. PubMed ID: 31985072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the mechanisms of development in monocot and eudicot leaves.
    Conklin PA; Strable J; Li S; Scanlon MJ
    New Phytol; 2019 Jan; 221(2):706-724. PubMed ID: 30106472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leaf surface development and the plant fossil record: stomatal patterning in Bennettitales.
    Rudall PJ; Bateman RM
    Biol Rev Camb Philos Soc; 2019 Jun; 94(3):1179-1194. PubMed ID: 30714286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Evolution of Grass Stomata.
    Chen ZH; Chen G; Dai F; Wang Y; Hills A; Ruan YL; Zhang G; Franks PJ; Nevo E; Blatt MR
    Trends Plant Sci; 2017 Feb; 22(2):124-139. PubMed ID: 27776931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pores for Thought: Can Genetic Manipulation of Stomatal Density Protect Future Rice Yields?
    Buckley CR; Caine RS; Gray JE
    Front Plant Sci; 2019; 10():1783. PubMed ID: 32117345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution and development of monocot stomata.
    Rudall PJ; Chen ED; Cullen E
    Am J Bot; 2017 Aug; 104(8):1122-1141. PubMed ID: 28794059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grasses use an alternatively wired bHLH transcription factor network to establish stomatal identity.
    Raissig MT; Abrash E; Bettadapur A; Vogel JP; Bergmann DC
    Proc Natl Acad Sci U S A; 2016 Jul; 113(29):8326-31. PubMed ID: 27382177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Form, development and function of grass stomata.
    Nunes TDG; Zhang D; Raissig MT
    Plant J; 2020 Feb; 101(4):780-799. PubMed ID: 31571301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stomatal development in the context of epidermal tissues.
    Torii KU
    Ann Bot; 2021 Jul; 128(2):137-148. PubMed ID: 33877316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stomatal development: focusing on the grasses.
    Hepworth C; Caine RS; Harrison EL; Sloan J; Gray JE
    Curr Opin Plant Biol; 2018 Feb; 41():1-7. PubMed ID: 28826033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Architecture and functions of stomatal cell walls in eudicots and grasses.
    Jaafar L; Anderson CT
    Ann Bot; 2024 Jul; 134(2):195-204. PubMed ID: 38757189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Role of Grass
    Serna L
    Front Plant Sci; 2020; 11():55. PubMed ID: 32117391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Duplicated antagonistic EPF peptides optimize grass stomatal initiation.
    Jangra R; Brunetti SC; Wang X; Kaushik P; Gulick PJ; Foroud NA; Wang S; Lee JS
    Development; 2021 Aug; 148(16):. PubMed ID: 34328169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of hair cell and stomatal size by a hair cell-specific peroxidase in the grass Brachypodium distachyon.
    Nunes TDG; Berg LS; Slawinska MW; Zhang D; Redt L; Sibout R; Vogel JP; Laudencia-Chingcuanco D; Jesenofsky B; Lindner H; Raissig MT
    Curr Biol; 2023 May; 33(9):1844-1854.e6. PubMed ID: 37086717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light Regulation of Stomatal Development and Patterning: Shifting the Paradigm from
    Wei H; Kong D; Yang J; Wang H
    Plant Commun; 2020 Mar; 1(2):100030. PubMed ID: 33367232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From grasses to succulents - development and function of distinct stomatal subsidiary cells.
    Cheng X; Raissig MT
    New Phytol; 2023 Jul; 239(1):47-53. PubMed ID: 37195101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Guard cell and subsidiary cell sizes are key determinants for stomatal kinetics and drought adaptation in cereal crops.
    Rui M; Chen R; Jing Y; Wu F; Chen ZH; Tissue D; Jiang H; Wang Y
    New Phytol; 2024 Jun; 242(6):2479-2494. PubMed ID: 38622763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expanded roles and divergent regulation of FAMA in Brachypodium and Arabidopsis stomatal development.
    McKown KH; Anleu Gil MX; Mair A; Xu SL; Raissig MT; Bergmann DC
    Plant Cell; 2023 Feb; 35(2):756-775. PubMed ID: 36440974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbonic Anhydrase Mutants in
    Kolbe AR; Brutnell TP; Cousins AB; Studer AJ
    Plant Physiol; 2018 Jul; 177(3):980-989. PubMed ID: 29794168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.