These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 32373152)
1. Genomic Breeding Programs Realize Larger Benefits by Cooperation in the Presence of Genotype × Environment Interaction Than Conventional Breeding Programs. Cao L; Liu H; Mulder HA; Henryon M; Thomasen JR; Kargo M; Sørensen AC Front Genet; 2020; 11():251. PubMed ID: 32373152 [TBL] [Abstract][Full Text] [Related]
2. Benefits of cooperation between breeding programs in the presence of genotype by environment interaction. Mulder HA; Bijma P J Dairy Sci; 2006 May; 89(5):1727-39. PubMed ID: 16606744 [TBL] [Abstract][Full Text] [Related]
3. Competitive gene flow does not necessarily maximize the genetic gain of genomic breeding programs in the presence of genotype-by-environment interaction. Cao L; Mulder HA; Liu H; Nielsen HM; S Rensen AC J Dairy Sci; 2021 Jul; 104(7):8122-8134. PubMed ID: 33934864 [TBL] [Abstract][Full Text] [Related]
4. Investigating the benefits and perils of importing genetic material in small cattle breeding programs via simulation. Obšteter J; Jenko J; Pocrnic I; Gorjanc G J Dairy Sci; 2023 Aug; 106(8):5593-5605. PubMed ID: 37474361 [TBL] [Abstract][Full Text] [Related]
5. Genomic mating as sustainable breeding for Chinese indigenous Ningxiang pigs. He J; Wu XL; Zeng Q; Li H; Ma H; Jiang J; Rosa GJM; Gianola D; Tait RG; Bauck S PLoS One; 2020; 15(8):e0236629. PubMed ID: 32797113 [TBL] [Abstract][Full Text] [Related]
6. Effects of genotype x environment interaction on genetic gain in breeding programs. Mulder HA; Bijma P J Anim Sci; 2005 Jan; 83(1):49-61. PubMed ID: 15583042 [TBL] [Abstract][Full Text] [Related]
7. Genomic analysis of inbreeding and coancestry in Nordic Jersey and Holstein dairy cattle populations. Tenhunen S; Thomasen JR; Sørensen LP; Berg P; Kargo M J Dairy Sci; 2024 Aug; 107(8):5897-5912. PubMed ID: 38608951 [TBL] [Abstract][Full Text] [Related]
8. Genotyping more cows increases genetic gain and reduces rate of true inbreeding in a dairy cattle breeding scheme using female reproductive technologies. Thomasen JR; Liu H; Sørensen AC J Dairy Sci; 2020 Jan; 103(1):597-606. PubMed ID: 31733861 [TBL] [Abstract][Full Text] [Related]
9. Economic evaluation of progeny-testing and genomic selection schemes for small-sized nucleus dairy cattle breeding programs in developing countries. Kariuki CM; Brascamp EW; Komen H; Kahi AK; van Arendonk JAM J Dairy Sci; 2017 Mar; 100(3):2258-2268. PubMed ID: 28109609 [TBL] [Abstract][Full Text] [Related]
10. Assessing the impact of natural service bulls and genotype by environment interactions on genetic gain and inbreeding in organic dairy cattle genomic breeding programs. Yin T; Wensch-Dorendorf M; Simianer H; Swalve HH; König S Animal; 2014 Jun; 8(6):877-86. PubMed ID: 24703184 [TBL] [Abstract][Full Text] [Related]
11. Increased genetic gains in sheep, beef and dairy breeding programs from using female reproductive technologies combined with optimal contribution selection and genomic breeding values. Granleese T; Clark SA; Swan AA; van der Werf JH Genet Sel Evol; 2015 Sep; 47(1):70. PubMed ID: 26370143 [TBL] [Abstract][Full Text] [Related]
12. Boosting Genetic Gain in Allogamous Crops Jighly A; Lin Z; Pembleton LW; Cogan NOI; Spangenberg GC; Hayes BJ; Daetwyler HD Front Plant Sci; 2019; 10():1364. PubMed ID: 31803197 [TBL] [Abstract][Full Text] [Related]
13. Short- and long-term consequences of collaboration between Northern European Red dairy and dual-purpose cattle. Schmidtmann C; Slagboom M; Sørensen AC; Hinrichs D; Thaller G; Kargo M J Anim Breed Genet; 2022 Jul; 139(4):447-461. PubMed ID: 35187742 [TBL] [Abstract][Full Text] [Related]
14. Genomic selection improves the possibility of applying multiple breeding programs in different environments. Slagboom M; Kargo M; Sørensen AC; Thomasen JR; Mulder HA J Dairy Sci; 2019 Sep; 102(9):8197-8209. PubMed ID: 31326182 [TBL] [Abstract][Full Text] [Related]
15. Effects of genomic selection on genetic improvement, inbreeding, and merit of young versus proven bulls. de Roos AP; Schrooten C; Veerkamp RF; van Arendonk JA J Dairy Sci; 2011 Mar; 94(3):1559-67. PubMed ID: 21338821 [TBL] [Abstract][Full Text] [Related]
16. Optimal implementation of genomic selection in clone breeding programs-Exemplified in potato: I. Effect of selection strategy, implementation stage, and selection intensity on short-term genetic gain. Wu PY; Stich B; Renner J; Muders K; Prigge V; van Inghelandt D Plant Genome; 2023 Jun; 16(2):e20327. PubMed ID: 37177848 [TBL] [Abstract][Full Text] [Related]
17. Most of the benefits from genomic selection can be realized by genotyping a small proportion of available selection candidates. Henryon M; Berg P; Ostersen T; Nielsen B; Sørensen AC J Anim Sci; 2012 Dec; 90(13):4681-9. PubMed ID: 23087087 [TBL] [Abstract][Full Text] [Related]
18. Impact of kinship matrices on genetic gain and inbreeding with optimum contribution selection in a genomic dairy cattle breeding program. Gautason E; Sahana G; Guldbrandtsen B; Berg P Genet Sel Evol; 2023 Jul; 55(1):48. PubMed ID: 37460999 [TBL] [Abstract][Full Text] [Related]
20. The effect of genomic information on optimal contribution selection in livestock breeding programs. Clark SA; Kinghorn BP; Hickey JM; van der Werf JH Genet Sel Evol; 2013 Oct; 45(1):44. PubMed ID: 24171942 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]