These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 32373738)

  • 1. Flexible robotic teleoperation architecture for intelligent oil fields.
    Caiza G; Garcia CA; Naranjo JE; Garcia MV
    Heliyon; 2020 Apr; 6(4):e03833. PubMed ID: 32373738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Haptic and Visual Feedback Assistance for Dual-Arm Robot Teleoperation in Surface Conditioning Tasks.
    Girbes-Juan V; Schettino V; Demiris Y; Tornero J
    IEEE Trans Haptics; 2021; 14(1):44-56. PubMed ID: 32746376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Task performance evaluation of asymmetric semiautonomous teleoperation of mobile twin-arm robotic manipulators.
    Malysz P; Sirouspour S
    IEEE Trans Haptics; 2013; 6(4):484-95. PubMed ID: 24808400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A system for bedside assistance that integrates a robotic bed and a mobile manipulator.
    Kapusta AS; Grice PM; Clever HM; Chitalia Y; Park D; Kemp CC
    PLoS One; 2019; 14(10):e0221854. PubMed ID: 31618205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human-inspired stable bilateral teleoperation of mobile manipulators.
    Santiago DD; Slawinski E; Mut V
    ISA Trans; 2019 Dec; 95():392-404. PubMed ID: 31153523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of a Hyper-Redundant Robot and Teleoperation Using Mixed Reality for Inspection Tasks.
    Martín-Barrio A; Roldán-Gómez JJ; Rodríguez I; Del Cerro J; Barrientos A
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32290619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies.
    Ehrampoosh S; Dave M; Kia MA; Rablau C; Zadeh MH
    Comput Aided Surg; 2013; 18(5-6):129-41. PubMed ID: 24156342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Still Not Solved: A Call for Renewed Focus on User-Centered Teleoperation Interfaces.
    Rea DJ; Seo SH
    Front Robot AI; 2022; 9():704225. PubMed ID: 35425813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Building a Relationship between Robot Characteristics and Teleoperation User Interfaces.
    Mortimer M; Horan B; Seyedmahmoudian M
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28335431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Task-Level Authoring for Remote Robot Teleoperation.
    Senft E; Hagenow M; Welsh K; Radwin R; Zinn M; Gleicher M; Mutlu B
    Front Robot AI; 2021; 8():707149. PubMed ID: 34646866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mixed reality based teleoperation and visualization of surgical robotics.
    Ai L; Kazanzides P; Azimi E
    Healthc Technol Lett; 2024; 11(2-3):179-188. PubMed ID: 38638499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensory manipulation as a countermeasure to robot teleoperation delays: system and evidence.
    Du J; Vann W; Zhou T; Ye Y; Zhu Q
    Sci Rep; 2024 Feb; 14(1):4333. PubMed ID: 38383745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A High Performance Tactile Feedback Display and Its Integration in Teleoperation.
    Sarakoglou I; Garcia-Hernandez N; Tsagarakis NG; Caldwell DG
    IEEE Trans Haptics; 2012; 5(3):252-63. PubMed ID: 26964111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental analysis of mobile-robot teleoperation via shared impedance control.
    Janabi-Sharifi F; Hassanzadeh I
    IEEE Trans Syst Man Cybern B Cybern; 2011 Apr; 41(2):591-606. PubMed ID: 20937582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing tele-manipulation systems using task performance for glovebox operations.
    Lopez Pulgarin EJ; Tokatli O; Burroughes G; Herrmann G
    Front Robot AI; 2022; 9():932538. PubMed ID: 36504493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hierarchical finite-time cooperative control for teleoperation of networked disturbed mobile manipulators.
    Fu J; Xu JZ; Ge MF; Ding TF; Park JH
    ISA Trans; 2023 Sep; 140():266-278. PubMed ID: 37301648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An improved model for target detection and pose estimation of a teleoperation power manipulator.
    Xie L; Huang J; Li Y; Guo J
    Front Neurorobot; 2023; 17():1193823. PubMed ID: 37600466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Teleoperation and Visualization Interfaces for Remote Intervention in Space.
    Kazanzides P; Vagvolgyi BP; Pryor W; Deguet A; Leonard S; Whitcomb LL
    Front Robot AI; 2021; 8():747917. PubMed ID: 34926590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A wearable vibrotactile system for distributed guidance in teleoperation and virtual environments.
    Bai D; Ju F; Qi F; Cao Y; Wang Y; Chen B
    Proc Inst Mech Eng H; 2019 Feb; 233(2):244-253. PubMed ID: 30595086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel Multi-Modal Teleoperation of a Humanoid Assistive Robot with Real-Time Motion Mimic.
    Cerón JC; Sunny MSH; Brahmi B; Mendez LM; Fareh R; Ahmed HU; Rahman MH
    Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.