These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 32373825)

  • 1. Nanoconfined water vapour as a probe to evaluate plasmonic heating.
    Chehadi Z; Boissière C; Chanéac C; Faustini M
    Nanoscale; 2020 Jul; 12(25):13368-13376. PubMed ID: 32373825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photothermal Convection Lithography for Rapid and Direct Assembly of Colloidal Plasmonic Nanoparticles on Generic Substrates.
    Jin CM; Lee W; Kim D; Kang T; Choi I
    Small; 2018 Nov; 14(45):e1803055. PubMed ID: 30294867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient Solar-Thermal Energy Harvest Driven by Interfacial Plasmonic Heating-Assisted Evaporation.
    Chang C; Yang C; Liu Y; Tao P; Song C; Shang W; Wu J; Deng T
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):23412-8. PubMed ID: 27537862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanosecond photothermal effects in plasmonic nanostructures.
    Chen X; Chen Y; Yan M; Qiu M
    ACS Nano; 2012 Mar; 6(3):2550-7. PubMed ID: 22356648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optothermal Manipulations of Colloidal Particles and Living Cells.
    Lin L; Hill EH; Peng X; Zheng Y
    Acc Chem Res; 2018 Jun; 51(6):1465-1474. PubMed ID: 29799720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale control of optical heating in complex plasmonic systems.
    Baffou G; Quidant R; García de Abajo FJ
    ACS Nano; 2010 Feb; 4(2):709-16. PubMed ID: 20055439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multifunctional Hybrid Fe2O3-Au Nanoparticles for Efficient Plasmonic Heating.
    Murph SE; Larsen GK; Lascola RJ
    J Vis Exp; 2016 Feb; (108):53598. PubMed ID: 26967491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photo-Induced Heating in Plasmonic Nanoparticles Trapped in Thermo-Sensitive Liquid Crystals.
    Pezzi L; De Sio L; Placido T; Comparelli R; Umeton C
    J Nanosci Nanotechnol; 2018 Oct; 18(10):6708-6718. PubMed ID: 29954485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Demonstration of temperature-plateau superheated liquid by photothermal conversion of plasmonic titanium nitride nanostructures.
    Ishii S; Kamakura R; Sakamoto H; Dao TD; Shinde SL; Nagao T; Fujita K; Namura K; Suzuki M; Murai S; Tanaka K
    Nanoscale; 2018 Oct; 10(39):18451-18456. PubMed ID: 30270375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonic heating induced by Au nanoparticles for quasi-ballistic thermal transport in multi-walled carbon nanotubes.
    Xu Y; Zhao X; Li A; Yue Y; Jiang J; Zhang X
    Nanoscale; 2019 Apr; 11(16):7572-7581. PubMed ID: 30951075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic visualization of photothermal heating by gold nanocages using thermoresponsive elastin like polypeptides.
    Cheemalapati S; Ladanov M; Pang B; Yuan Y; Koria P; Xia Y; Pyayt A
    Nanoscale; 2016 Dec; 8(45):18912-18920. PubMed ID: 27714072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial and Temporal Nanoscale Plasmonic Heating Quantified by Thermoreflectance.
    Wang D; Koh YR; Kudyshev ZA; Maize K; Kildishev AV; Boltasseva A; Shalaev VM; Shakouri A
    Nano Lett; 2019 Jun; 19(6):3796-3803. PubMed ID: 31067061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Picosecond-to-nanosecond dynamics of plasmonic nanobubbles from pump-probe spectral measurements of aqueous colloidal gold nanoparticles.
    Katayama T; Setoura K; Werner D; Miyasaka H; Hashimoto S
    Langmuir; 2014 Aug; 30(31):9504-13. PubMed ID: 25083945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Switchable Plasmonic Film Using Nanoconfined Liquid Crystals.
    Ryu SH; Yoon DK
    ACS Appl Mater Interfaces; 2017 Jul; 9(29):25057-25061. PubMed ID: 28677393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic photothermal heating of gold nanostars in a real-size container: multiscale modelling and experimental study.
    Gherman AMM; Boca S; Vulpoi A; Cristea MV; Farcau C; Tosa V
    Nanotechnology; 2020 Mar; 31(12):125701. PubMed ID: 31783389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photothermal heating enabled by plasmonic nanostructures for electrokinetic manipulation and sorting of particles.
    Ndukaife JC; Mishra A; Guler U; Nnanna AG; Wereley ST; Boltasseva A
    ACS Nano; 2014 Sep; 8(9):9035-43. PubMed ID: 25144369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface Bubble Growth in Plasmonic Nanoparticle Suspension.
    Zhang Q; Neal RD; Huang D; Neretina S; Lee E; Luo T
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):26680-26687. PubMed ID: 32402195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional bicontinuous nanoporous materials by vapor phase dealloying.
    Lu Z; Li C; Han J; Zhang F; Liu P; Wang H; Wang Z; Cheng C; Chen L; Hirata A; Fujita T; Erlebacher J; Chen M
    Nat Commun; 2018 Jan; 9(1):276. PubMed ID: 29348401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic heating from indium nanoparticles on a floating microporous membrane for enhanced solar seawater desalination.
    Zhang L; Xing J; Wen X; Chai J; Wang S; Xiong Q
    Nanoscale; 2017 Sep; 9(35):12843-12849. PubMed ID: 28832043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.