These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 32373832)

  • 1. Controlling the liberation rate of the in situ release of a chemical fuel for the operationally autonomous motions of molecular machines.
    Biagini C; Capocasa G; Del Giudice D; Cataldi V; Mandolini L; Di Stefano S
    Org Biomol Chem; 2020 May; 18(20):3867-3873. PubMed ID: 32373832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Hydrolysis of the Anhydride of 2-Cyano-2-phenylpropanoic Acid Triggers the Repeated Back and Forth Motions of an Acid-Base Operated Molecular Switch.
    Biagini C; Capocasa G; Cataldi V; Del Giudice D; Mandolini L; Di Stefano S
    Chemistry; 2019 Nov; 25(66):15205-15211. PubMed ID: 31573109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling of the Decarboxylation of 2-Cyano-2-phenylpropanoic Acid to Large-Amplitude Motions: A Convenient Fuel for an Acid-Base-Operated Molecular Switch.
    Berrocal JA; Biagini C; Mandolini L; Di Stefano S
    Angew Chem Int Ed Engl; 2016 Jun; 55(24):6997-7001. PubMed ID: 27145060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoinduced Release of a Chemical Fuel for Acid-Base-Operated Molecular Machines.
    Biagini C; Di Pietri F; Mandolini L; Lanzalunga O; Di Stefano S
    Chemistry; 2018 Jul; 24(40):10122-10127. PubMed ID: 29697159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Abiotic Chemical Fuels for the Operation of Molecular Machines.
    Biagini C; Di Stefano S
    Angew Chem Int Ed Engl; 2020 May; 59(22):8344-8354. PubMed ID: 31898850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissipative Systems Driven by the Decarboxylation of Activated Carboxylic Acids.
    Del Giudice D; Di Stefano S
    Acc Chem Res; 2023 Apr; 56(7):889-899. PubMed ID: 36916734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The aminolysis of N-aroyl beta-lactams occurs by a concerted mechanism.
    Tsang WY; Ahmed N; Page MI
    Org Biomol Chem; 2007 Feb; 5(3):485-93. PubMed ID: 17252131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling Dual Molecular Pumps Electrochemically.
    Pezzato C; Nguyen MT; Kim DJ; Anamimoghadam O; Mosca L; Stoddart JF
    Angew Chem Int Ed Engl; 2018 Jul; 57(30):9325-9329. PubMed ID: 29774639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal Control of the Host-Guest Properties of a Calix[6]arene Receptor by the Use of a Chemical Fuel.
    Rispoli F; Spatola E; Del Giudice D; Cacciapaglia R; Casnati A; Baldini L; Di Stefano S
    J Org Chem; 2022 Mar; 87(5):3623-3629. PubMed ID: 35196018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical vs. chemical driving for molecular machines.
    Astumian RD
    Faraday Discuss; 2016 Dec; 195():583-597. PubMed ID: 27768148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FTIR-ATR spectroscopy for monitoring polyanhydride/anhydride-amine reactions.
    Krishnan M; Flanagan DR
    J Control Release; 2000 Nov; 69(2):273-81. PubMed ID: 11064134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of carboxypeptidase-Y-catalysed peptide semisynthesis.
    Christensen U; Drøhse HB; Mølgaard L
    Eur J Biochem; 1992 Dec; 210(2):467-73. PubMed ID: 1459131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Equilibria and kinetics of N-hydroxymethylamine formation from aromatic exocyclic amines and formaldehyde. Effects of nucleophilicity and catalyst strength upon mechanisms of catalysis of carbinolamine formation¹.
    Abrams WR; Kallen RG
    J Am Chem Soc; 1976 Nov; 98(24):7777-89. PubMed ID: 23320306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA-based machines.
    Wang F; Willner B; Willner I
    Top Curr Chem; 2014; 354():279-338. PubMed ID: 24647836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Advances in Fuel-Driven Molecular Switches and Machines.
    Benny R; Sahoo D; George A; De S
    ChemistryOpen; 2022 Sep; 11(9):e202200128. PubMed ID: 36071446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving Fatigue Resistance and Autonomous Switching of pH Responsive Hydrazones by Pulses of a Chemical Fuel.
    Maity P; Pradhan H; Das A; Dalapati M; Samanta D
    Chemistry; 2024 Jun; 30(35):e202400328. PubMed ID: 38646974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Irrelevance of the power stroke for the directionality, stopping force, and optimal efficiency of chemically driven molecular machines.
    Astumian RD
    Biophys J; 2015 Jan; 108(2):291-303. PubMed ID: 25606678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 2-Cyano-2-phenylpropanoic Acid Triggers the Back and Forth Motions of an Acid-Base-Operated Paramagnetic Molecular Switch.
    Franchi P; Poderi C; Mezzina E; Biagini C; Di Stefano S; Lucarini M
    J Org Chem; 2019 Jul; 84(14):9364-9368. PubMed ID: 31203619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Step-by-step reaction-powered mechanical motion triggered by a chemical fuel pulse.
    Shi Q; Chen CF
    Chem Sci; 2019 Feb; 10(8):2529-2533. PubMed ID: 30881683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unraveling the Operational Mechanisms of Chemically Propelled Motors with Micropumps.
    Esplandiu MJ; Zhang K; Fraxedas J; Sepulveda B; Reguera D
    Acc Chem Res; 2018 Sep; 51(9):1921-1930. PubMed ID: 30192137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.