These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 32373907)

  • 1. Mechanical robustness of monolayer nanoparticle-covered liquid marbles.
    Huang J; Wang Z; Shi H; Li X
    Soft Matter; 2020 May; 16(19):4632-4639. PubMed ID: 32373907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Liquid marbles and liquid plasticines with nanoparticle monolayers.
    Li X
    Adv Colloid Interface Sci; 2019 Sep; 271():101988. PubMed ID: 31330397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Particle Monolayer-Stabilized Light-Sensitive Liquid Marbles from Polypyrrole-Coated Microparticles.
    Asaumi Y; Rey M; Vogel N; Nakamura Y; Fujii S
    Langmuir; 2020 Mar; 36(10):2695-2706. PubMed ID: 32078776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Stabilizing Particle Size on the Structure and Properties of Liquid Marbles.
    Asaumi Y; Rey M; Oyama K; Vogel N; Hirai T; Nakamura Y; Fujii S
    Langmuir; 2020 Nov; 36(44):13274-13284. PubMed ID: 33115238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transfer of Materials from Water to Solid Surfaces Using Liquid Marbles.
    Kawashima H; Paven M; Mayama H; Butt HJ; Nakamura Y; Fujii S
    ACS Appl Mater Interfaces; 2017 Sep; 9(38):33351-33359. PubMed ID: 28879765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photo/Thermo Dual Stimulus-Responsive Liquid Marbles Stabilized with Polypyrrole-Coated Stearic Acid Particles.
    Tsumura Y; Oyama K; Fameau AL; Seike M; Ohtaka A; Hirai T; Nakamura Y; Fujii S
    ACS Appl Mater Interfaces; 2022 Sep; 14(36):41618-41628. PubMed ID: 36043393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of nanoparticle self-assembly into superhydrophobic liquid marbles during water condensation.
    Rykaczewski K; Chinn J; Walker ML; Scott JH; Chinn A; Jones W
    ACS Nano; 2011 Dec; 5(12):9746-54. PubMed ID: 22035295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elasticity of liquid marbles.
    Asare-Asher S; Connor JN; Sedev R
    J Colloid Interface Sci; 2015 Jul; 449():341-6. PubMed ID: 25698501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photo- and Thermoresponsive Liquid Marbles Based on Fatty Acid as Phase Change Material Coated by Polypyrrole: From Design to Applications.
    Tsumura Y; Fameau AL; Matsui K; Hirai T; Nakamura Y; Fujii S
    Langmuir; 2023 Jan; 39(2):878-889. PubMed ID: 36602465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surfactant-Mediated Collapse of Liquid Marbles and Directed Assembly of Particles at the Liquid Surface.
    Singha P; Swaminathan S; Yadav AS; Varanakkottu SN
    Langmuir; 2019 Apr; 35(13):4566-4576. PubMed ID: 30829489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of Liquid Marbles Using pH-Responsive Particles: Rolling vs Electrostatic Methods.
    Kido K; Ireland PM; Sekido T; Wanless EJ; Webber GB; Nakamura Y; Fujii S
    Langmuir; 2018 May; 34(17):4970-4979. PubMed ID: 29631397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Liquid marbles from soot films.
    Li X; Shi H; Wang Y; Wang H; Huang J; Duan M
    Soft Matter; 2020 May; 16(18):4512-4519. PubMed ID: 32352107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-Pot Preparation of Fluorine-Free Magnetic Superhydrophobic Particles for Controllable Liquid Marbles and Robust Multifunctional Coatings.
    Zhu R; Liu M; Hou Y; Zhang L; Li M; Wang D; Fu S
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):17004-17017. PubMed ID: 32191430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal switch of oscillation frequency in Belousov-Zhabotinsky liquid marbles.
    Adamatzky A; Fullarton C; Phillips N; De Lacy Costello B; Draper TC
    R Soc Open Sci; 2019 Apr; 6(4):190078. PubMed ID: 31183147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrophobically Modified Gelatin Particles for Production of Liquid Marbles.
    Takei T; Tomimatsu R; Matsumoto T; Sreejith KR; Nguyen NT; Yoshida M
    Polymers (Basel); 2022 Nov; 14(22):. PubMed ID: 36432975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Droplet-Impact Driven Formation of Ultralow Volume Liquid Marbles with Enhanced Mechanical Stability and Sensing Ability.
    Lekshmi BS; Varanakkottu SN
    Langmuir; 2022 Sep; 38(38):11743-11752. PubMed ID: 36109337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the mechanism of floating and sliding of liquid marbles.
    Bormashenko E; Bormashenko Y; Musin A; Barkay Z
    Chemphyschem; 2009 Mar; 10(4):654-6. PubMed ID: 19177484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaporation, Lifetime, and Robustness Studies of Liquid Marbles for Collision-Based Computing.
    Fullarton C; Draper TC; Phillips N; Mayne R; de Lacy Costello BPJ; Adamatzky A
    Langmuir; 2018 Feb; 34(7):2573-2580. PubMed ID: 29359941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Locomotion of a Nonaqueous Liquid Marble Induced by Near-Infrared-Light Irradiation.
    Uda M; Kawashima H; Mayama H; Hirai T; Nakamura Y; Fujii S
    Langmuir; 2021 Apr; 37(14):4172-4182. PubMed ID: 33788574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Liquid Marbles under Electric Fields: New Capabilities for Non-wetting Droplet Manipulation and Beyond.
    Zhang Y; Cui H; Binks BP; Shum HC
    Langmuir; 2022 Aug; 38(32):9721-9740. PubMed ID: 35918302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.