BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

32 related articles for article (PubMed ID: 32374008)

  • 1. Expression of Concern.
    Listed NA
    Eur Rev Med Pharmacol Sci; 2024 May; 28(10):3473. PubMed ID: 38856145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Publisher Correction: The neuroanatomical-functional paradox in spinal cord injury.
    Fouad K; Popovich PG; Kopp MA; Schwab JM
    Nat Rev Neurol; 2023 Oct; 19(10):635. PubMed ID: 37553394
    [No Abstract]   [Full Text] [Related]  

  • 3. Bone Marrow Mesenchymal Stem Cell-Derived Exosomes Improves Spinal Cord Function After Injury in Rats by Activating Autophagy.
    Gu J; Jin ZS; Wang CM; Yan XF; Mao YQ; Chen S
    Drug Des Devel Ther; 2020; 14():1621-1631. PubMed ID: 32425507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeted Delivery of Mesenchymal Stem Cell-Derived Nanovesicles for Spinal Cord Injury Treatment.
    Lee JR; Kyung JW; Kumar H; Kwon SP; Song SY; Han IB; Kim BS
    Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32545361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transplantation of Human Mesenchymal Stem-Cell-Derived Exosomes Immobilized in an Adhesive Hydrogel for Effective Treatment of Spinal Cord Injury.
    Li L; Zhang Y; Mu J; Chen J; Zhang C; Cao H; Gao J
    Nano Lett; 2020 Jun; 20(6):4298-4305. PubMed ID: 32379461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exosomes derived from human placenta-derived mesenchymal stem cells improve neurologic function by promoting angiogenesis after spinal cord injury.
    Zhang C; Zhang C; Xu Y; Li C; Cao Y; Li P
    Neurosci Lett; 2020 Nov; 739():135399. PubMed ID: 32979457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Serum exosomal microRNA transcriptome profiling in subacute spinal cord injured rats.
    Ding SQ; Chen YQ; Chen J; Wang SN; Duan FX; Shi YJ; Hu JG; Lü HZ
    Genomics; 2020 Nov; 112(6):5086-5100. PubMed ID: 32919018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuron-derived exosomes-transmitted miR-124-3p protect traumatically injured spinal cord by suppressing the activation of neurotoxic microglia and astrocytes.
    Jiang D; Gong F; Ge X; Lv C; Huang C; Feng S; Zhou Z; Rong Y; Wang J; Ji C; Chen J; Zhao W; Fan J; Liu W; Cai W
    J Nanobiotechnology; 2020 Jul; 18(1):105. PubMed ID: 32711535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Circular Ribonucleic Acids in the Treatment of Traumatic Brain and Spinal Cord Injury.
    Yuan J; Botchway BOA; Zhang Y; Wang X; Liu X
    Mol Neurobiol; 2020 Oct; 57(10):4296-4304. PubMed ID: 32700251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resveratrol-primed exosomes strongly promote the recovery of motor function in SCI rats by activating autophagy and inhibiting apoptosis via the PI3K signaling pathway.
    Fan Y; Li Y; Huang S; Xu H; Li H; Liu B
    Neurosci Lett; 2020 Sep; 736():135262. PubMed ID: 32682847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strategies and prospects of effective neural circuits reconstruction after spinal cord injury.
    Yang B; Zhang F; Cheng F; Ying L; Wang C; Shi K; Wang J; Xia K; Gong Z; Huang X; Yu C; Li F; Liang C; Chen Q
    Cell Death Dis; 2020 Jun; 11(6):439. PubMed ID: 32513969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mesenchymal stem cell-derived exosomes containing miR-145-5p reduce inflammation in spinal cord injury by regulating the TLR4/NF-κB signaling pathway.
    Jiang Z; Zhang J
    Cell Cycle; 2021 May; 20(10):993-1009. PubMed ID: 33945431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mesenchymal Stem Cell-Derived Exosomes: Hope for Spinal Cord Injury Repair.
    Ren Z; Qi Y; Sun S; Tao Y; Shi R
    Stem Cells Dev; 2020 Dec; 29(23):1467-1478. PubMed ID: 33045910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone marrow mesenchymal stem cell-derived exosomal microRNA-125a promotes M2 macrophage polarization in spinal cord injury by downregulating IRF5.
    Chang Q; Hao Y; Wang Y; Zhou Y; Zhuo H; Zhao G
    Brain Res Bull; 2021 May; 170():199-210. PubMed ID: 33609602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Progression in translational research on spinal cord injury based on microenvironment imbalance.
    Fan B; Wei Z; Feng S
    Bone Res; 2022 Apr; 10(1):35. PubMed ID: 35396505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mesenchymal Stem Cell Therapy: Hope for Patients With Systemic Lupus Erythematosus.
    Li A; Guo F; Pan Q; Chen S; Chen J; Liu HF; Pan Q
    Front Immunol; 2021; 12():728190. PubMed ID: 34659214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mesenchymal stem cell-derived exosomes: therapeutic opportunities and challenges for spinal cord injury.
    Liu WZ; Ma ZJ; Li JR; Kang XW
    Stem Cell Res Ther; 2021 Feb; 12(1):102. PubMed ID: 33536064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Progress in exosomes and their potential use in ocular diseases.
    Li SF; Han Y; Wang F; Su Y
    Int J Ophthalmol; 2020; 13(9):1493-1498. PubMed ID: 32953591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of exosomes derived from mir-126-modified mesenchymal stem cells on the repair process of spinal cord injury in rats.
    Yuan B; Pan S; Dong YQ; Zhang WW; He XD
    Eur Rev Med Pharmacol Sci; 2020 Apr; 24(8):4058. PubMed ID: 32374008
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.