These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 32374164)

  • 1. Restricted-Variance Molecular Geometry Optimization Based on Gradient-Enhanced Kriging.
    Raggi G; Galván IF; Ritterhoff CL; Vacher M; Lindh R
    J Chem Theory Comput; 2020 Jun; 16(6):3989-4001. PubMed ID: 32374164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Story of Three Levels of Sophistication in SCF/KS-DFT Orbital Optimization Procedures.
    Sethio D; Azzopardi E; Fdez Galván I; Lindh R
    J Phys Chem A; 2024 Mar; 128(12):2472-2486. PubMed ID: 38483190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Restricted-Variance Constrained, Reaction Path, and Transition State Molecular Optimizations Using Gradient-Enhanced Kriging.
    Fdez Galván I; Raggi G; Lindh R
    J Chem Theory Comput; 2021 Jan; 17(1):571-582. PubMed ID: 33382621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design optimization of stent and its dilatation balloon using kriging surrogate model.
    Li H; Liu T; Wang M; Zhao D; Qiao A; Wang X; Gu J; Li Z; Zhu B
    Biomed Eng Online; 2017 Jan; 16(1):13. PubMed ID: 28086895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A finite difference Davidson procedure to sidestep full ab initio hessian calculation: application to characterization of stationary points and transition state searches.
    Sharada SM; Bell AT; Head-Gordon M
    J Chem Phys; 2014 Apr; 140(16):164115. PubMed ID: 24784261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated Transition State Searches without Evaluating the Hessian.
    Mallikarjun Sharada S; Zimmerman PM; Bell AT; Head-Gordon M
    J Chem Theory Comput; 2012 Dec; 8(12):5166-74. PubMed ID: 26593206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quadratically convergent algorithm for orbital optimization in the orbital-optimized coupled-cluster doubles method and in orbital-optimized second-order Møller-Plesset perturbation theory.
    Bozkaya U; Turney JM; Yamaguchi Y; Schaefer HF; Sherrill CD
    J Chem Phys; 2011 Sep; 135(10):104103. PubMed ID: 21932872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geometry Optimization: A Comparison of Different Open-Source Geometry Optimizers.
    Shajan A; Manathunga M; Götz AW; Merz KM
    J Chem Theory Comput; 2023 Nov; 19(21):7533-7541. PubMed ID: 37870541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New General Tools for Constrained Geometry Optimizations.
    De Vico L; Olivucci M; Lindh R
    J Chem Theory Comput; 2005 Sep; 1(5):1029-37. PubMed ID: 26641918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A spur to molecular geometry optimization: Gradient-enhanced universal kriging with on-the-fly adaptive ab initio prior mean functions in curvilinear coordinates.
    Teng C; Huang D; Bao JL
    J Chem Phys; 2023 Jan; 158(2):024112. PubMed ID: 36641392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Orbital-optimized third-order Møller-Plesset perturbation theory and its spin-component and spin-opposite scaled variants: application to symmetry breaking problems.
    Bozkaya U
    J Chem Phys; 2011 Dec; 135(22):224103. PubMed ID: 22168676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of methods for finding saddle points without knowledge of the final states.
    Olsen RA; Kroes GJ; Henkelman G; Arnaldsson A; Jónsson H
    J Chem Phys; 2004 Nov; 121(20):9776-92. PubMed ID: 15549851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using bonding to guide transition state optimization.
    Birkholz AB; Schlegel HB
    J Comput Chem; 2015 Jun; 36(15):1157-66. PubMed ID: 25847703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analytic gradient for second order Møller-Plesset perturbation theory with the polarizable continuum model based on the fragment molecular orbital method.
    Nagata T; Fedorov DG; Li H; Kitaura K
    J Chem Phys; 2012 May; 136(20):204112. PubMed ID: 22667545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Second-Order Orbital Optimization with Large Active Spaces Using Adaptive Sampling Configuration Interaction (ASCI) and Its Application to Molecular Geometry Optimization.
    Park JW
    J Chem Theory Comput; 2021 Mar; 17(3):1522-1534. PubMed ID: 33630610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient Structure Optimization with Second-Order Many-Body Perturbation Theory: The RIJCOSX-MP2 Method.
    Kossmann S; Neese F
    J Chem Theory Comput; 2010 Aug; 6(8):2325-38. PubMed ID: 26613489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Technique for incorporating the density functional Hessian into the geometry optimization of biomolecules, solvated molecules, and large floppy molecules.
    Chang R; Barile PA; Maslen PE
    J Chem Phys; 2004 May; 120(18):8379-88. PubMed ID: 15267761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Geometry Optimization with Machine Trained Topological Atoms.
    Zielinski F; Maxwell PI; Fletcher TL; Davie SJ; Di Pasquale N; Cardamone S; Mills MJL; Popelier PLA
    Sci Rep; 2017 Oct; 7(1):12817. PubMed ID: 28993674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Constrained numerical gradients and composite gradients: Practical tools for geometry optimization and potential energy surface navigation.
    Stenrup M; Lindh R; Fdez Galván I
    J Comput Chem; 2015 Aug; 36(22):1698-708. PubMed ID: 26140702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Second-order state-specific multireference Møller-Plesset perturbation theory (SS-MRMPPT) applied to geometry optimization.
    Mahapatra US; Chattopadhyay S; Chaudhuri RK
    J Phys Chem A; 2010 Mar; 114(10):3668-82. PubMed ID: 20151664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.