These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 32374226)

  • 1. Using deep neural networks to detect complex spikes of cerebellar Purkinje cells.
    Markanday A; Bellet J; Bellet ME; Inoue J; Hafed ZM; Thier P
    J Neurophysiol; 2020 Jun; 123(6):2217-2234. PubMed ID: 32374226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of Swimming-Related Synaptic Excitation and Inhibition by olig2
    Harmon TC; McLean DL; Raman IM
    J Neurosci; 2020 Apr; 40(15):3063-3074. PubMed ID: 32139583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The origin of the complex spike in cerebellar Purkinje cells.
    Davie JT; Clark BA; Häusser M
    J Neurosci; 2008 Jul; 28(30):7599-609. PubMed ID: 18650337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. P-sort: an open-source software for cerebellar neurophysiology.
    Sedaghat-Nejad E; Fakharian MA; Pi J; Hage P; Kojima Y; Soetedjo R; Ohmae S; Medina JF; Shadmehr R
    J Neurophysiol; 2021 Oct; 126(4):1055-1075. PubMed ID: 34432996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The dynamic relationship between cerebellar Purkinje cell simple spikes and the spikelet number of complex spikes.
    Burroughs A; Wise AK; Xiao J; Houghton C; Tang T; Suh CY; Lang EJ; Apps R; Cerminara NL
    J Physiol; 2017 Jan; 595(1):283-299. PubMed ID: 27265808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complex Spike Wars: a New Hope.
    Streng ML; Popa LS; Ebner TJ
    Cerebellum; 2018 Dec; 17(6):735-746. PubMed ID: 29982917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Responses of Purkinje cells in the oculomotor vermis of monkeys during smooth pursuit eye movements and saccades: comparison with floccular complex.
    Raghavan RT; Lisberger SG
    J Neurophysiol; 2017 Aug; 118(2):986-1001. PubMed ID: 28515286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Association between dendritic lamellar bodies and complex spike synchrony in the olivocerebellar system.
    De Zeeuw CI; Koekkoek SK; Wylie DR; Simpson JI
    J Neurophysiol; 1997 Apr; 77(4):1747-58. PubMed ID: 9114233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Climbing fiber synapses rapidly and transiently inhibit neighboring Purkinje cells via ephaptic coupling.
    Han KS; Chen CH; Khan MM; Guo C; Regehr WG
    Nat Neurosci; 2020 Nov; 23(11):1399-1409. PubMed ID: 32895566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neurons of the inferior olive respond to broad classes of sensory input while subject to homeostatic control.
    Ju C; Bosman LWJ; Hoogland TM; Velauthapillai A; Murugesan P; Warnaar P; van Genderen RM; Negrello M; De Zeeuw CI
    J Physiol; 2019 May; 597(9):2483-2514. PubMed ID: 30908629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Part I: The Complex Spikes as One of the Cerebellar Secrets.
    Manto M; Triarhou LC
    Cerebellum; 2021 Jun; 20(3):327-329. PubMed ID: 33638793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of Purkinje cell inhibition by cerebellar nucleo-olivary neurons.
    Najac M; Raman IM
    J Neurosci; 2015 Jan; 35(2):544-9. PubMed ID: 25589749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simple and complex spike responses of mouse cerebellar Purkinje neurons to regular trains and omissions of somatosensory stimuli.
    Zempolich GW; Brown ST; Holla M; Raman IM
    J Neurophysiol; 2021 Sep; 126(3):763-776. PubMed ID: 34346760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simple and complex spike firing patterns in Purkinje cells during classical conditioning.
    Rasmussen A; Jirenhed DA; Hesslow G
    Cerebellum; 2008; 7(4):563-6. PubMed ID: 18931885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An active membrane model of the cerebellar Purkinje cell II. Simulation of synaptic responses.
    De Schutter E; Bower JM
    J Neurophysiol; 1994 Jan; 71(1):401-19. PubMed ID: 8158238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Axonal propagation of simple and complex spikes in cerebellar Purkinje neurons.
    Khaliq ZM; Raman IM
    J Neurosci; 2005 Jan; 25(2):454-63. PubMed ID: 15647489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Statistical characteristics of climbing fiber spikes necessary for efficient cerebellar learning.
    Kuroda S; Yamamoto K; Miyamoto H; Doya K; Kawat M
    Biol Cybern; 2001 Mar; 84(3):183-92. PubMed ID: 11252636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Climbing Fibers Control Purkinje Cell Representations of Behavior.
    Streng ML; Popa LS; Ebner TJ
    J Neurosci; 2017 Feb; 37(8):1997-2009. PubMed ID: 28077726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The inhibitory effect of the olivocerebellar input on the cerebellar Purkinje cells in the rat.
    Montarolo PG; Palestini M; Strata P
    J Physiol; 1982 Nov; 332():187-202. PubMed ID: 7153927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reliable coding emerges from coactivation of climbing fibers in microbands of cerebellar Purkinje neurons.
    Ozden I; Sullivan MR; Lee HM; Wang SS
    J Neurosci; 2009 Aug; 29(34):10463-73. PubMed ID: 19710300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.