BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 32374275)

  • 1. Three-dimensional reconstruction of individual helical nano-filament structures from atomic force microscopy topographs.
    Lutter L; Serpell CJ; Tuite MF; Serpell LC; Xue WF
    Biomol Concepts; 2020 May; 11(1):102-115. PubMed ID: 32374275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomic force microscopy 3D structural reconstruction of individual particles in the study of amyloid protein assemblies.
    Chitty C; Kuliga K; Xue WF
    Biochem Soc Trans; 2024 Apr; 52(2):761-771. PubMed ID: 38600027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural information, resolution, and noise in high-resolution atomic force microscopy topographs.
    Fechner P; Boudier T; Mangenot S; Jaroslawski S; Sturgis JN; Scheuring S
    Biophys J; 2009 May; 96(9):3822-31. PubMed ID: 19413988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic force microscopy as an imaging tool to study the bio/nonbio complexes.
    Bednarikova Z; Gazova Z; Valle F; Bystrenova E
    J Microsc; 2020 Dec; 280(3):241-251. PubMed ID: 32519330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural Identification of Individual Helical Amyloid Filaments by Integration of Cryo-Electron Microscopy-Derived Maps in Comparative Morphometric Atomic Force Microscopy Image Analysis.
    Lutter L; Al-Hilaly YK; Serpell CJ; Tuite MF; Wischik CM; Serpell LC; Xue WF
    J Mol Biol; 2022 Apr; 434(7):167466. PubMed ID: 35077765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From high-resolution AFM topographs to atomic models of supramolecular assemblies.
    Scheuring S; Boudier T; Sturgis JN
    J Struct Biol; 2007 Aug; 159(2):268-76. PubMed ID: 17399998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-lapse atomic force microscopy in the characterization of amyloid-like fibril assembly and oligomeric intermediates.
    Goldsbury C; Green J
    Methods Mol Biol; 2005; 299():103-28. PubMed ID: 15980598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic Force Microscopy: An Introduction.
    Piontek MC; Roos WH
    Methods Mol Biol; 2018; 1665():243-258. PubMed ID: 28940073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic Force Microscopy: An Introduction.
    Feng Y; Roos WH
    Methods Mol Biol; 2024; 2694():295-316. PubMed ID: 37824010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated setpoint adjustment for biological contact mode atomic force microscopy imaging.
    Casuso I; Scheuring S
    Nanotechnology; 2010 Jan; 21(3):035104. PubMed ID: 19966388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic force fluorescence microscopy in the characterization of amyloid fibril assembly and oligomeric intermediates.
    Ostapchenko V; Gasset M; Baskakov IV
    Methods Mol Biol; 2012; 849():157-67. PubMed ID: 22528089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation atomic force microscopy for atomic reconstruction of biomolecular structures from resolution-limited experimental images.
    Amyot R; Marchesi A; Franz CM; Casuso I; Flechsig H
    PLoS Comput Biol; 2022 Mar; 18(3):e1009970. PubMed ID: 35294442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct observation of the actin filament by tip-scan atomic force microscopy.
    Narita A; Usukura E; Yagi A; Tateyama K; Akizuki S; Kikumoto M; Matsumoto T; Maéda Y; Ito S; Usukura J
    Microscopy (Oxf); 2016 Aug; 65(4):370-7. PubMed ID: 27242058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-resolution noncontact atomic force microscopy.
    Pérez R; García R; Schwarz U
    Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrostatically balanced subnanometer imaging of biological specimens by atomic force microscope.
    Müller DJ; Fotiadis D; Scheuring S; Müller SA; Engel A
    Biophys J; 1999 Feb; 76(2):1101-11. PubMed ID: 9916042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring biomolecular interactions by time-lapse atomic force microscopy.
    Stolz M; Stoffler D; Aebi U; Goldsbury C
    J Struct Biol; 2000 Sep; 131(3):171-80. PubMed ID: 11052889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sampling the conformational space of membrane protein surfaces with the AFM.
    Scheuring S; Müller DJ; Stahlberg H; Engel HA; Engel A
    Eur Biophys J; 2002 Jun; 31(3):172-8. PubMed ID: 12029329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-resolution three-dimensional imaging of the rich membrane structures of bone marrow-derived mast cells.
    Zink T; Deng Z; Chen H; Yu L; Liu FT; Liu GY
    Ultramicroscopy; 2008 Dec; 109(1):22-31. PubMed ID: 18790570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomic force bio-analytics.
    Frederix PL; Akiyama T; Staufer U; Gerber Ch; Fotiadis D; Müller DJ; Engel A
    Curr Opin Chem Biol; 2003 Oct; 7(5):641-7. PubMed ID: 14580570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. End-to-end differentiable blind tip reconstruction for noisy atomic force microscopy images.
    Matsunaga Y; Fuchigami S; Ogane T; Takada S
    Sci Rep; 2023 Jan; 13(1):129. PubMed ID: 36599879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.