These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 32374582)

  • 21. Long-range surface plasmon resonance and surface-enhanced Raman scattering on X-shaped gold plasmonic nanohole arrays.
    Hou C; Galvan DD; Meng G; Yu Q
    Phys Chem Chem Phys; 2017 Sep; 19(35):24126-24134. PubMed ID: 28837198
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regio-selective decoration of nanocavity metal arrays: contributions from localized and delocalized plasmons to surface enhanced Raman spectroscopy.
    Jose B; Mallon CT; Forster RJ; Keyes TE
    Phys Chem Chem Phys; 2011 Aug; 13(32):14705-14. PubMed ID: 21738915
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Silicon nanopillars for field-enhanced surface spectroscopy.
    Wells SM; Merkulov IA; Kravchenko II; Lavrik NV; Sepaniak MJ
    ACS Nano; 2012 Apr; 6(4):2948-59. PubMed ID: 22385359
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lithography-free approach to highly efficient, scalable SERS substrates based on disordered clusters of disc-on-pillar structures.
    Agapov RL; Srijanto B; Fowler C; Briggs D; Lavrik NV; Sepaniak MJ
    Nanotechnology; 2013 Dec; 24(50):505302. PubMed ID: 24285471
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Self-assembled large Au nanoparticle arrays with regular hot spots for SERS.
    Chen A; DePrince AE; Demortière A; Joshi-Imre A; Shevchenko EV; Gray SK; Welp U; Vlasko-Vlasov VK
    Small; 2011 Aug; 7(16):2365-71. PubMed ID: 21630447
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hexagonal arrays of plasmonic gold nanopyramids on flexible substrates for surface-enhanced Raman scattering.
    Simo PC; Laible F; Horneber A; Burkhardt CJ; Fleischer M
    Nanotechnology; 2021 Dec; 33(9):. PubMed ID: 34727539
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A SERS and electrical sensor from gas-phase generated Ag nanoparticles self-assembled on planar substrates.
    Wang S; Tay LL; Liu H
    Analyst; 2016 Mar; 141(5):1721-33. PubMed ID: 26824092
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gold mesoflower arrays with sub-10 nm intraparticle gaps for highly sensitive and repeatable surface enhanced Raman spectroscopy.
    Tian C; Liu Z; Jin J; Lebedkin S; Huang C; You H; Liu R; Wang L; Song X; Ding B; Barczewski M; Schimmel T; Fang J
    Nanotechnology; 2012 Apr; 23(16):165604. PubMed ID: 22469765
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High Aspect-Ratio Iridium-Coated Nanopillars for Highly Reproducible Surface-Enhanced Raman Scattering (SERS).
    Kang G; Matikainen A; Stenberg P; Färm E; Li P; Ritala M; Vahimaa P; Honkanen S; Tan X
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11452-9. PubMed ID: 25961706
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Self-Assembled Metal Nanohole Arrays with Tunable Plasmonic Properties for SERS Single-Molecule Detection.
    Lospinoso D; Colombelli A; Lomascolo M; Rella R; Manera MG
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159725
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stable, Flexible, and High-Performance SERS Chip Enabled by a Ternary Film-Packaged Plasmonic Nanoparticle Array.
    Wang K; Sun DW; Pu H; Wei Q; Huang L
    ACS Appl Mater Interfaces; 2019 Aug; 11(32):29177-29186. PubMed ID: 31317741
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Surface-Enhanced Raman Spectroscopy for
    Chen J; Wang JF; Wu XZ; Rong Z; Dong PT; Xiao R
    J Nanosci Nanotechnol; 2018 Jun; 18(6):3825-3831. PubMed ID: 29442715
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineering 3D Nanoplasmonic Assemblies for High Performance Spectroscopic Sensing.
    Dinda S; Suresh V; Thoniyot P; Balčytis A; Juodkazis S; Krishnamoorthy S
    ACS Appl Mater Interfaces; 2015 Dec; 7(50):27661-6. PubMed ID: 26523480
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanostructured gold films for SERS by block copolymer-templated galvanic displacement reactions.
    Wang Y; Becker M; Wang L; Liu J; Scholz R; Peng J; Gösele U; Christiansen S; Kim DH; Steinhart M
    Nano Lett; 2009 Jun; 9(6):2384-9. PubMed ID: 19459615
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gold Nanopost-Shell Arrays Fabricated by Nanoimprint Lithography as a Flexible Plasmonic Sensing Platform.
    Farcau C; Marconi D; Colniță A; Brezeștean I; Barbu-Tudoran L
    Nanomaterials (Basel); 2019 Oct; 9(11):. PubMed ID: 31731460
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thin film block copolymer self-assembly for nanophotonics.
    Kulkarni AA; Doerk GS
    Nanotechnology; 2022 Apr; 33(29):. PubMed ID: 35358955
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Three-dimensional (3D) plasmonic hot spots for label-free sensing and effective photothermal killing of multiple drug resistant superbugs.
    Jones S; Sinha SS; Pramanik A; Ray PC
    Nanoscale; 2016 Nov; 8(43):18301-18308. PubMed ID: 27714099
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plasmonic 3D Semiconductor-Metal Nanopore Arrays for Reliable Surface-Enhanced Raman Scattering Detection and In-Site Catalytic Reaction Monitoring.
    Zhang M; Chen T; Liu Y; Zhang J; Sun H; Yang J; Zhu J; Liu J; Wu Y
    ACS Sens; 2018 Nov; 3(11):2446-2454. PubMed ID: 30335972
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Theoretical Simulation and Focused Ion Beam Fabrication of Gold Nanostructures For Surface-Enhanced Raman Scattering (SERS).
    Dhawan A; Gerhold M; Vo-Dinh T
    Nanobiotechnology; 2007 Dec; 3(3-4):164-171. PubMed ID: 23976888
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analyte Co-localization at Electromagnetic Gap Hot-Spots for Highly Sensitive (Bio)molecular Detection by Plasmon Enhanced Spectroscopies.
    Rastogi R; Arianfard H; Moss D; Juodkazis S; Adam PM; Krishnamoorthy S
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):9113-9121. PubMed ID: 33583180
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.