These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 32374604)

  • 1. Revisiting the Tropospheric OH-Initiated Unimolecular Decomposition of Chlorpyrifos and Chlorpyrifos-Methyl: A Theoretical Perspective.
    Quintano MM; Rodrigues GLS; Chagas MA; Rocha WR
    J Phys Chem A; 2020 May; 124(21):4280-4289. PubMed ID: 32374604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational insights into the reactivity of chlorpyrifos and chlorpyrifos-methyl toward singlet oxygen.
    Quintano MM; Rocha WR
    J Mol Model; 2021 Sep; 27(10):282. PubMed ID: 34505937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of the Thermal Decomposition of Chlorpyrifos and Formation of the Dioxin Analog, 2,3,7,8-Tetrachloro-1,4-dioxino-dipyridine (TCDDpy).
    Kennedy EM; Mackie JC
    Environ Sci Technol; 2018 Jul; 52(13):7327-7333. PubMed ID: 29846064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unimolecular Decay of Criegee Intermediates to OH Radical Products: Prompt and Thermal Decay Processes.
    Lester MI; Klippenstein SJ
    Acc Chem Res; 2018 Apr; 51(4):978-985. PubMed ID: 29613756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of OH Radical-Initiated H2CO3 Degradation in the Earth's Atmosphere via Proton-Coupled Electron Transfer Mechanism.
    Ghoshal S; Hazra MK
    J Phys Chem A; 2016 Feb; 120(4):562-75. PubMed ID: 26731551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on the atmospheric degradation of chlorpyrifos-methyl.
    Muñoz A; Vera T; Sidebottom H; Mellouki A; Borrás E; Ródenas M; Clemente E; Vázquez M
    Environ Sci Technol; 2011 Mar; 45(5):1880-6. PubMed ID: 21288020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exposures of preschool children to chlorpyrifos and its degradation product 3,5,6-trichloro-2-pyridinol in their everyday environments.
    Morgan MK; Sheldon LS; Croghan CW; Jones PA; Robertson GL; Chuang JC; Wilson NK; Lyu CW
    J Expo Anal Environ Epidemiol; 2005 Jul; 15(4):297-309. PubMed ID: 15367928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reaction mechanism of naphthyl radicals with molecular oxygen. 1. Theoretical study of the potential energy surface.
    Zhou CW; Kislov VV; Mebel AM
    J Phys Chem A; 2012 Feb; 116(6):1571-85. PubMed ID: 22239650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydroxyl radical initiated oxidation of s-triazine: hydrogen abstraction is faster than hydroxyl addition.
    da Silva G; Bozzelli JW; Asatryan R
    J Phys Chem A; 2009 Jul; 113(30):8596-606. PubMed ID: 19572687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hepatotoxicity and nephrotoxicity induced by the chlorpyrifos and chlorpyrifos-methyl metabolite, 3,5,6-trichloro-2-pyridinol, in orally exposed mice.
    Deng Y; Zhang Y; Lu Y; Zhao Y; Ren H
    Sci Total Environ; 2016 Feb; 544():507-14. PubMed ID: 26674679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reaction of methacrolein with the hydroxyl radical in air: incorporation of secondary O2 addition into the MACR + OH master equation.
    da Silva G
    J Phys Chem A; 2012 Jun; 116(22):5317-24. PubMed ID: 22591164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The gas-phase degradation of chlorpyrifos and chlorpyrifos-oxon towards OH radical under atmospheric conditions.
    Muñoz A; Ródenas M; Borrás E; Vázquez M; Vera T
    Chemosphere; 2014 Sep; 111():522-8. PubMed ID: 24997961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enthalpies of formation, bond dissociation energies and reaction paths for the decomposition of model biofuels: ethyl propanoate and methyl butanoate.
    El-Nahas AM; Navarro MV; Simmie JM; Bozzelli JW; Curran HJ; Dooley S; Metcalfe W
    J Phys Chem A; 2007 May; 111(19):3727-39. PubMed ID: 17286391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reaction of hydroxyl radicals with azacytosines: a pulse radiolysis and theoretical study.
    Pramod G; Prasanthkumar KP; Mohan H; Manoj VM; Manoj P; Suresh CH; Aravindakumar CT
    J Phys Chem A; 2006 Oct; 110(40):11517-26. PubMed ID: 17020265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roaming-like Mechanism for Dehydration of Diol Radicals.
    Asatryan R; Pal Y; Hachmann J; Ruckenstein E
    J Phys Chem A; 2018 Dec; 122(51):9738-9754. PubMed ID: 30484647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of Gordonia sp JAAS1 in biodegradation of chlorpyrifos and its hydrolysing metabolite 3,5,6-trichloro-2-pyridinol.
    Abraham J; Shanker A; Silambarasan S
    Lett Appl Microbiol; 2013 Dec; 57(6):510-6. PubMed ID: 23909785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical investigations on the thermal decomposition mechanism of 5-hydroxy-6-hydroperoxy-5,6-dihydrothymidine in water.
    Chen ZQ; Xue Y
    J Phys Chem B; 2010 Oct; 114(39):12641-54. PubMed ID: 20839840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydroxyl radical reactions with adenine: reactant complexes, transition states, and product complexes.
    Cheng Q; Gu J; Compaan KR; Schaefer HF
    Chemistry; 2010 Oct; 16(39):11848-58. PubMed ID: 20878802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrolysis of Formyl Fluoride Catalyzed by Sulfuric Acid and Formic Acid in the Atmosphere.
    Zhang L; Long B
    ACS Omega; 2019 Nov; 4(21):18996-19004. PubMed ID: 31763521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic pathways of the hydroxyl radical reactions of quinoline. 2. Computational analysis of hydroxyl radical attack at C atoms.
    Nicolaescu AR; Wiest O; Kamat PV
    J Phys Chem A; 2005 Mar; 109(12):2829-35. PubMed ID: 16833597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.