These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 32374606)

  • 1. Combining Graphics Processing Units, Simplified Time-Dependent Density Functional Theory, and Finite-Difference Couplings to Accelerate Nonadiabatic Molecular Dynamics.
    Peters LDM; Kussmann J; Ochsenfeld C
    J Phys Chem Lett; 2020 May; 11(10):3955-3961. PubMed ID: 32374606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonadiabatic Molecular Dynamics on Graphics Processing Units: Performance and Application to Rotary Molecular Motors.
    Peters LDM; Kussmann J; Ochsenfeld C
    J Chem Theory Comput; 2019 Dec; 15(12):6647-6659. PubMed ID: 31763834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonadiabatic Dynamics Simulations for Photoinduced Processes in Molecules and Semiconductors: Methodologies and Applications.
    Liu XY; Chen WK; Fang WH; Cui G
    J Chem Theory Comput; 2023 Dec; 19(23):8491-8522. PubMed ID: 37984502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ab initio nonadiabatic dynamics of multichromophore complexes: a scalable graphical-processing-unit-accelerated exciton framework.
    Sisto A; Glowacki DR; Martinez TJ
    Acc Chem Res; 2014 Sep; 47(9):2857-66. PubMed ID: 25186064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accelerating Hybrid Density Functional Theory Molecular Dynamics Simulations by Seminumerical Integration, Resolution-of-the-Identity Approximation, and Graphics Processing Units.
    Laqua H; Dietschreit JCB; Kussmann J; Ochsenfeld C
    J Chem Theory Comput; 2022 Oct; 18(10):6010-6020. PubMed ID: 36136665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting Kinetics and Dynamics of Spin-Dependent Processes.
    Dergachev ID; Dergachev VD; Rooein M; Mirzanejad A; Varganov SA
    Acc Chem Res; 2023 Apr; 56(7):856-866. PubMed ID: 36926853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Employing OpenCL to Accelerate Ab Initio Calculations on Graphics Processing Units.
    Kussmann J; Ochsenfeld C
    J Chem Theory Comput; 2017 Jun; 13(6):2712-2716. PubMed ID: 28561575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast Overlap Evaluations for Nonadiabatic Molecular Dynamics Simulations: Applications to SF-TDDFT and TDDFT.
    Lee S; Kim E; Lee S; Choi CH
    J Chem Theory Comput; 2019 Feb; 15(2):882-891. PubMed ID: 30620592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boosting Free-Energy Perturbation Calculations with GPU-Accelerated NAMD.
    Chen H; Maia JDC; Radak BK; Hardy DJ; Cai W; Chipot C; Tajkhorshid E
    J Chem Inf Model; 2020 Nov; 60(11):5301-5307. PubMed ID: 32805108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonadiabatic molecular dynamics simulations based on time-dependent density functional tight-binding method.
    Wu X; Wen S; Song H; Frauenheim T; Tretiak S; Yam C; Zhang Y
    J Chem Phys; 2022 Aug; 157(8):084114. PubMed ID: 36049993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multistate hybrid time-dependent density functional theory with surface hopping accurately captures ultrafast thymine photodeactivation.
    Parker SM; Roy S; Furche F
    Phys Chem Chem Phys; 2019 Sep; 21(35):18999-19010. PubMed ID: 31465041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface Hopping within an Exciton Picture. An Electrostatic Embedding Scheme.
    Menger MFSJ; Plasser F; Mennucci B; González L
    J Chem Theory Comput; 2018 Dec; 14(12):6139-6148. PubMed ID: 30299941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ab initio non-adiabatic molecular dynamics.
    Tapavicza E; Bellchambers GD; Vincent JC; Furche F
    Phys Chem Chem Phys; 2013 Nov; 15(42):18336-48. PubMed ID: 24068257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Double-buffered, heterogeneous CPU + GPU integral digestion algorithm for single-excitation calculations involving a large number of excited states.
    Morrison AF; Epifanovsky E; Herbert JM
    J Comput Chem; 2018 Oct; 39(26):2173-2182. PubMed ID: 30368836
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Yu JK; Bannwarth C; Hohenstein EG; Martínez TJ
    J Chem Theory Comput; 2020 Sep; 16(9):5499-5511. PubMed ID: 32786902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonadiabatic couplings from time-dependent density functional theory. II. Successes and challenges of the pseudopotential approximation.
    Hu C; Hirai H; Sugino O
    J Chem Phys; 2008 Apr; 128(15):154111. PubMed ID: 18433194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First-order nonadiabatic couplings from time-dependent hybrid density functional response theory: Consistent formalism, implementation, and performance.
    Send R; Furche F
    J Chem Phys; 2010 Jan; 132(4):044107. PubMed ID: 20113019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphics Processing Unit Acceleration and Parallelization of GENESIS for Large-Scale Molecular Dynamics Simulations.
    Jung J; Naurse A; Kobayashi C; Sugita Y
    J Chem Theory Comput; 2016 Oct; 12(10):4947-4958. PubMed ID: 27631425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum Mechanics/Molecular Mechanics Simulations on NVIDIA and AMD Graphics Processing Units.
    Manathunga M; Aktulga HM; Götz AW; Merz KM
    J Chem Inf Model; 2023 Feb; 63(3):711-717. PubMed ID: 36720086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NAC-TDDFT: Time-Dependent Density Functional Theory for Nonadiabatic Couplings.
    Wang Z; Wu C; Liu W
    Acc Chem Res; 2021 Sep; 54(17):3288-3297. PubMed ID: 34448566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.