These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 32374631)
1. Personalized Network Modeling of the Pan-Cancer Patient and Cell Line Interactome. Bhattacharyya R; Ha MJ; Liu Q; Akbani R; Liang H; Baladandayuthapani V JCO Clin Cancer Inform; 2020 May; 4():399-411. PubMed ID: 32374631 [TBL] [Abstract][Full Text] [Related]
2. Personalized Integrated Network Modeling of the Cancer Proteome Atlas. Ha MJ; Banerjee S; Akbani R; Liang H; Mills GB; Do KA; Baladandayuthapani V Sci Rep; 2018 Oct; 8(1):14924. PubMed ID: 30297783 [TBL] [Abstract][Full Text] [Related]
3. Using feature selection and Bayesian network identify cancer subtypes based on proteomic data. Wang Y; Gao X; Ru X; Sun P; Wang J J Proteomics; 2023 May; 280():104895. PubMed ID: 37024076 [TBL] [Abstract][Full Text] [Related]
4. Pan-Cancer Prediction of Cell-Line Drug Sensitivity Using Network-Based Methods. Pouryahya M; Oh JH; Mathews JC; Belkhatir Z; Moosmüller C; Deasy JO; Tannenbaum AR Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163005 [TBL] [Abstract][Full Text] [Related]
5. NetCellMatch: Multiscale Network-Based Matching of Cancer Cell Lines to Patients Using Graphical Wavelets. Desai N; Morris JS; Baladandayuthapani V Chem Biodivers; 2022 Dec; 19(12):e202200746. PubMed ID: 36279370 [TBL] [Abstract][Full Text] [Related]
6. Network-Based Matching of Patients and Targeted Therapies for Precision Oncology. Liu Q; Ha MJ; Bhattacharyya R; Garmire L; Baladandayuthapani V Pac Symp Biocomput; 2020; 25():623-634. PubMed ID: 31797633 [TBL] [Abstract][Full Text] [Related]
7. A hierarchical spike-and-slab model for pan-cancer survival using pan-omic data. Samorodnitsky S; Hoadley KA; Lock EF BMC Bioinformatics; 2022 Jun; 23(1):235. PubMed ID: 35710340 [TBL] [Abstract][Full Text] [Related]
8. Predictive genomics: a cancer hallmark network framework for predicting tumor clinical phenotypes using genome sequencing data. Wang E; Zaman N; Mcgee S; Milanese JS; Masoudi-Nejad A; O'Connor-McCourt M Semin Cancer Biol; 2015 Feb; 30():4-12. PubMed ID: 24747696 [TBL] [Abstract][Full Text] [Related]
10. Identifying cell lines across pan-cancer to be used in preclinical research as a proxy for patient tumor samples. Bose B; Bozdag S Commun Biol; 2024 Sep; 7(1):1101. PubMed ID: 39244634 [TBL] [Abstract][Full Text] [Related]
11. Predicting breast cancer drug response using a multiple-layer cell line drug response network model. Huang S; Hu P; Lakowski TM BMC Cancer; 2021 May; 21(1):648. PubMed ID: 34059012 [TBL] [Abstract][Full Text] [Related]
12. Clinical drug response prediction from preclinical cancer cell lines by logistic matrix factorization approach. Emdadi A; Eslahchi C J Bioinform Comput Biol; 2022 Apr; 20(2):2150035. PubMed ID: 34923927 [TBL] [Abstract][Full Text] [Related]
13. A pan-cancer survey of cell line tumor similarity by feature-weighted molecular profiles. Sinha R; Luna A; Schultz N; Sander C Cell Rep Methods; 2021 Jun; 1(2):100039. PubMed ID: 35475239 [TBL] [Abstract][Full Text] [Related]
14. Colorectal Cancer Cell Line Proteomes Are Representative of Primary Tumors and Predict Drug Sensitivity. Wang J; Mouradov D; Wang X; Jorissen RN; Chambers MC; Zimmerman LJ; Vasaikar S; Love CG; Li S; Lowes K; Leuchowius KJ; Jousset H; Weinstock J; Yau C; Mariadason J; Shi Z; Ban Y; Chen X; Coffey RJC; Slebos RJC; Burgess AW; Liebler DC; Zhang B; Sieber OM Gastroenterology; 2017 Oct; 153(4):1082-1095. PubMed ID: 28625833 [TBL] [Abstract][Full Text] [Related]
15. NExUS: Bayesian simultaneous network estimation across unequal sample sizes. Das P; Peterson CB; Do KA; Akbani R; Baladandayuthapani V Bioinformatics; 2020 Feb; 36(3):798-804. PubMed ID: 31504175 [TBL] [Abstract][Full Text] [Related]
16. A meta-analysis approach for characterizing pan-cancer mechanisms of drug sensitivity in cell lines. Wang K; Shrestha R; Wyatt AW; Reddy A; Lehár J; Wang Y; Lapuk A; Collins CC PLoS One; 2014; 9(7):e103050. PubMed ID: 25036042 [TBL] [Abstract][Full Text] [Related]
17. A comprehensive overview of oncogenic pathways in human cancer. Li F; Wu T; Xu Y; Dong Q; Xiao J; Xu Y; Li Q; Zhang C; Gao J; Liu L; Hu X; Huang J; Li X; Zhang Y Brief Bioinform; 2020 May; 21(3):957-969. PubMed ID: 31155677 [TBL] [Abstract][Full Text] [Related]
18. An integrative pan-cancer investigation reveals common genetic and transcriptional alterations of AMPK pathway genes as important predictors of clinical outcomes across major cancer types. Chang WH; Lai AG BMC Cancer; 2020 Aug; 20(1):773. PubMed ID: 32807122 [TBL] [Abstract][Full Text] [Related]
19. A pan-cancer analysis of HER2 index revealed transcriptional pattern for precise selection of HER2-targeted therapy. Li Z; Chen S; Feng W; Luo Y; Lai H; Li Q; Xiu B; Li Y; Li Y; Huang S; Zhu X EBioMedicine; 2020 Dec; 62():103074. PubMed ID: 33161227 [TBL] [Abstract][Full Text] [Related]
20. INTEGRATING GENETIC AND STRUCTURAL DATA ON HUMAN PROTEIN KINOME IN NETWORK-BASED MODELING OF KINASE SENSITIVITIES AND RESISTANCE TO TARGETED AND PERSONALIZED ANTICANCER DRUGS. Verkhivker GM Pac Symp Biocomput; 2016; 21():45-56. PubMed ID: 26776172 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]