BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 32374631)

  • 1. Personalized Network Modeling of the Pan-Cancer Patient and Cell Line Interactome.
    Bhattacharyya R; Ha MJ; Liu Q; Akbani R; Liang H; Baladandayuthapani V
    JCO Clin Cancer Inform; 2020 May; 4():399-411. PubMed ID: 32374631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Personalized Integrated Network Modeling of the Cancer Proteome Atlas.
    Ha MJ; Banerjee S; Akbani R; Liang H; Mills GB; Do KA; Baladandayuthapani V
    Sci Rep; 2018 Oct; 8(1):14924. PubMed ID: 30297783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using feature selection and Bayesian network identify cancer subtypes based on proteomic data.
    Wang Y; Gao X; Ru X; Sun P; Wang J
    J Proteomics; 2023 May; 280():104895. PubMed ID: 37024076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pan-Cancer Prediction of Cell-Line Drug Sensitivity Using Network-Based Methods.
    Pouryahya M; Oh JH; Mathews JC; Belkhatir Z; Moosmüller C; Deasy JO; Tannenbaum AR
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NetCellMatch: Multiscale Network-Based Matching of Cancer Cell Lines to Patients Using Graphical Wavelets.
    Desai N; Morris JS; Baladandayuthapani V
    Chem Biodivers; 2022 Dec; 19(12):e202200746. PubMed ID: 36279370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Network-Based Matching of Patients and Targeted Therapies for Precision Oncology.
    Liu Q; Ha MJ; Bhattacharyya R; Garmire L; Baladandayuthapani V
    Pac Symp Biocomput; 2020; 25():623-634. PubMed ID: 31797633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A hierarchical spike-and-slab model for pan-cancer survival using pan-omic data.
    Samorodnitsky S; Hoadley KA; Lock EF
    BMC Bioinformatics; 2022 Jun; 23(1):235. PubMed ID: 35710340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predictive genomics: a cancer hallmark network framework for predicting tumor clinical phenotypes using genome sequencing data.
    Wang E; Zaman N; Mcgee S; Milanese JS; Masoudi-Nejad A; O'Connor-McCourt M
    Semin Cancer Biol; 2015 Feb; 30():4-12. PubMed ID: 24747696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning multi-omics analysis reveals cancer driver dysregulation in pan-cancer cell lines compared to primary tumors.
    Sanders LM; Chandra R; Zebarjadi N; Beale HC; Lyle AG; Rodriguez A; Kephart ET; Pfeil J; Cheney A; Learned K; Currie R; Gitlin L; Vengerov D; Haussler D; Salama SR; Vaske OM
    Commun Biol; 2022 Dec; 5(1):1367. PubMed ID: 36513728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting breast cancer drug response using a multiple-layer cell line drug response network model.
    Huang S; Hu P; Lakowski TM
    BMC Cancer; 2021 May; 21(1):648. PubMed ID: 34059012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clinical drug response prediction from preclinical cancer cell lines by logistic matrix factorization approach.
    Emdadi A; Eslahchi C
    J Bioinform Comput Biol; 2022 Apr; 20(2):2150035. PubMed ID: 34923927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A pan-cancer survey of cell line tumor similarity by feature-weighted molecular profiles.
    Sinha R; Luna A; Schultz N; Sander C
    Cell Rep Methods; 2021 Jun; 1(2):100039. PubMed ID: 35475239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Colorectal Cancer Cell Line Proteomes Are Representative of Primary Tumors and Predict Drug Sensitivity.
    Wang J; Mouradov D; Wang X; Jorissen RN; Chambers MC; Zimmerman LJ; Vasaikar S; Love CG; Li S; Lowes K; Leuchowius KJ; Jousset H; Weinstock J; Yau C; Mariadason J; Shi Z; Ban Y; Chen X; Coffey RJC; Slebos RJC; Burgess AW; Liebler DC; Zhang B; Sieber OM
    Gastroenterology; 2017 Oct; 153(4):1082-1095. PubMed ID: 28625833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NExUS: Bayesian simultaneous network estimation across unequal sample sizes.
    Das P; Peterson CB; Do KA; Akbani R; Baladandayuthapani V
    Bioinformatics; 2020 Feb; 36(3):798-804. PubMed ID: 31504175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A meta-analysis approach for characterizing pan-cancer mechanisms of drug sensitivity in cell lines.
    Wang K; Shrestha R; Wyatt AW; Reddy A; Lehár J; Wang Y; Lapuk A; Collins CC
    PLoS One; 2014; 9(7):e103050. PubMed ID: 25036042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comprehensive overview of oncogenic pathways in human cancer.
    Li F; Wu T; Xu Y; Dong Q; Xiao J; Xu Y; Li Q; Zhang C; Gao J; Liu L; Hu X; Huang J; Li X; Zhang Y
    Brief Bioinform; 2020 May; 21(3):957-969. PubMed ID: 31155677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An integrative pan-cancer investigation reveals common genetic and transcriptional alterations of AMPK pathway genes as important predictors of clinical outcomes across major cancer types.
    Chang WH; Lai AG
    BMC Cancer; 2020 Aug; 20(1):773. PubMed ID: 32807122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting drug response of tumors from integrated genomic profiles by deep neural networks.
    Chiu YC; Chen HH; Zhang T; Zhang S; Gorthi A; Wang LJ; Huang Y; Chen Y
    BMC Med Genomics; 2019 Jan; 12(Suppl 1):18. PubMed ID: 30704458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A pan-cancer analysis of HER2 index revealed transcriptional pattern for precise selection of HER2-targeted therapy.
    Li Z; Chen S; Feng W; Luo Y; Lai H; Li Q; Xiu B; Li Y; Li Y; Huang S; Zhu X
    EBioMedicine; 2020 Dec; 62():103074. PubMed ID: 33161227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. INTEGRATING GENETIC AND STRUCTURAL DATA ON HUMAN PROTEIN KINOME IN NETWORK-BASED MODELING OF KINASE SENSITIVITIES AND RESISTANCE TO TARGETED AND PERSONALIZED ANTICANCER DRUGS.
    Verkhivker GM
    Pac Symp Biocomput; 2016; 21():45-56. PubMed ID: 26776172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.