These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
409 related articles for article (PubMed ID: 32374763)
1. Engineering a 3D in vitro model of human skeletal muscle at the single fiber scale. Urciuolo A; Serena E; Ghua R; Zatti S; Giomo M; Mattei N; Vetralla M; Selmin G; Luni C; Vitulo N; Valle G; Vitiello L; Elvassore N PLoS One; 2020; 15(5):e0232081. PubMed ID: 32374763 [TBL] [Abstract][Full Text] [Related]
2. Electrical stimulation increases hypertrophy and metabolic flux in tissue-engineered human skeletal muscle. Khodabukus A; Madden L; Prabhu NK; Koves TR; Jackman CP; Muoio DM; Bursac N Biomaterials; 2019 Apr; 198():259-269. PubMed ID: 30180985 [TBL] [Abstract][Full Text] [Related]
3. Prolonged Culture of Aligned Skeletal Myotubes on Micromolded Gelatin Hydrogels. Bettadapur A; Suh GC; Geisse NA; Wang ER; Hua C; Huber HA; Viscio AA; Kim JY; Strickland JB; McCain ML Sci Rep; 2016 Jun; 6():28855. PubMed ID: 27350122 [TBL] [Abstract][Full Text] [Related]
4. Cell Density and Joint microRNA-133a and microRNA-696 Inhibition Enhance Differentiation and Contractile Function of Engineered Human Skeletal Muscle Tissues. Cheng CS; Ran L; Bursac N; Kraus WE; Truskey GA Tissue Eng Part A; 2016 Apr; 22(7-8):573-83. PubMed ID: 26891613 [TBL] [Abstract][Full Text] [Related]
5. Microfluidic-enhanced 3D bioprinting of aligned myoblast-laden hydrogels leads to functionally organized myofibers in vitro and in vivo. Costantini M; Testa S; Mozetic P; Barbetta A; Fuoco C; Fornetti E; Tamiro F; Bernardini S; Jaroszewicz J; Święszkowski W; Trombetta M; Castagnoli L; Seliktar D; Garstecki P; Cesareni G; Cannata S; Rainer A; Gargioli C Biomaterials; 2017 Jul; 131():98-110. PubMed ID: 28388499 [TBL] [Abstract][Full Text] [Related]
6. Mesenchymal stem cells and myoblast differentiation under HGF and IGF-1 stimulation for 3D skeletal muscle tissue engineering. Witt R; Weigand A; Boos AM; Cai A; Dippold D; Boccaccini AR; Schubert DW; Hardt M; Lange C; Arkudas A; Horch RE; Beier JP BMC Cell Biol; 2017 Feb; 18(1):15. PubMed ID: 28245809 [TBL] [Abstract][Full Text] [Related]
7. Myoblast maturity on aligned microfiber bundles at the onset of strain application impacts myogenic outcomes. Somers SM; Zhang NY; Morrissette-McAlmon JBF; Tran K; Mao HQ; Grayson WL Acta Biomater; 2019 Aug; 94():232-242. PubMed ID: 31212110 [TBL] [Abstract][Full Text] [Related]
8. Fabrication of contractile skeletal muscle tissues using directly converted myoblasts from human fibroblasts. Shimizu K; Ohsumi S; Kishida T; Mazda O; Honda H J Biosci Bioeng; 2020 May; 129(5):632-637. PubMed ID: 31859190 [TBL] [Abstract][Full Text] [Related]
9. Satellite cells delivered in their niche efficiently generate functional myotubes in three-dimensional cell culture. Prüller J; Mannhardt I; Eschenhagen T; Zammit PS; Figeac N PLoS One; 2018; 13(9):e0202574. PubMed ID: 30222770 [TBL] [Abstract][Full Text] [Related]
11. Optimizing the structure and contractility of engineered skeletal muscle thin films. Sun Y; Duffy R; Lee A; Feinberg AW Acta Biomater; 2013 Aug; 9(8):7885-94. PubMed ID: 23632372 [TBL] [Abstract][Full Text] [Related]
12. Bioinspired Three-Dimensional Human Neuromuscular Junction Development in Suspended Hydrogel Arrays. Dixon TA; Cohen E; Cairns DM; Rodriguez M; Mathews J; Jose RR; Kaplan DL Tissue Eng Part C Methods; 2018 Jun; 24(6):346-359. PubMed ID: 29739270 [TBL] [Abstract][Full Text] [Related]
13. Generation of Chicken Contractile Skeletal Muscle Structure Using Decellularized Plant Scaffolds. Hong TK; Do JT ACS Biomater Sci Eng; 2024 May; 10(5):3500-3512. PubMed ID: 38563398 [TBL] [Abstract][Full Text] [Related]
14. Engineering multi-layered skeletal muscle tissue by using 3D microgrooved collagen scaffolds. Chen S; Nakamoto T; Kawazoe N; Chen G Biomaterials; 2015 Dec; 73():23-31. PubMed ID: 26398306 [TBL] [Abstract][Full Text] [Related]
16. A novel in vitro model for the assessment of postnatal myonuclear accretion. Kneppers A; Verdijk L; de Theije C; Corten M; Gielen E; van Loon L; Schols A; Langen R Skelet Muscle; 2018 Feb; 8(1):4. PubMed ID: 29444710 [TBL] [Abstract][Full Text] [Related]
17. Enhanced skeletal muscle formation on microfluidic spun gelatin methacryloyl (GelMA) fibres using surface patterning and agrin treatment. Ebrahimi M; Ostrovidov S; Salehi S; Kim SB; Bae H; Khademhosseini A J Tissue Eng Regen Med; 2018 Nov; 12(11):2151-2163. PubMed ID: 30048044 [TBL] [Abstract][Full Text] [Related]
18. Effect of nano- and micro-scale topological features on alignment of muscle cells and commitment of myogenic differentiation. Jana S; Leung M; Chang J; Zhang M Biofabrication; 2014 Sep; 6(3):035012. PubMed ID: 24876344 [TBL] [Abstract][Full Text] [Related]
19. Skeletal Muscle Constructs Engineered from Human Embryonic Stem Cell Derived Myogenic Progenitors Exhibit Enhanced Contractile Forces When Differentiated in a Medium Containing EGM-2 Supplements. Xu B; Zhang M; Perlingeiro RCR; Shen W Adv Biosyst; 2019 Dec; 3(12):e1900005. PubMed ID: 32648685 [TBL] [Abstract][Full Text] [Related]
20. 3D myotube guidance on hierarchically organized anisotropic and conductive fibers for skeletal muscle tissue engineering. Zhang Y; Zhang Z; Wang Y; Su Y; Chen M Mater Sci Eng C Mater Biol Appl; 2020 Nov; 116():111070. PubMed ID: 32806237 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]