These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 32375219)

  • 1. Very Short-Term Surface Solar Irradiance Forecasting Based On FengYun-4 Geostationary Satellite.
    Yang L; Gao X; Hua J; Wu P; Li Z; Jia D
    Sensors (Basel); 2020 May; 20(9):. PubMed ID: 32375219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards the intrahour forecasting of direct normal irradiance using sky-imaging data.
    Nou J; Chauvin R; Eynard J; Thil S; Grieu S
    Heliyon; 2018 Apr; 4(4):e00598. PubMed ID: 29862360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An ensemble method to forecast 24-h ahead solar irradiance using wavelet decomposition and BiLSTM deep learning network.
    Singla P; Duhan M; Saroha S
    Earth Sci Inform; 2022; 15(1):291-306. PubMed ID: 34804244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiometric Performance Evaluation of FY-4A/AGRI Based on Aqua/MODIS.
    Zhong B; Ma Y; Yang A; Wu J
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33799978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Harnessing the power of hybrid deep learning algorithm for the estimation of global horizontal irradiance.
    Gupta R; Yadav AK; Jha SK
    Sci Total Environ; 2024 Sep; 943():173958. PubMed ID: 38871320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Very short-term reactive forecasting of the solar ultraviolet index using an extreme learning machine integrated with the solar zenith angle.
    Deo RC; Downs N; Parisi AV; Adamowski JF; Quilty JM
    Environ Res; 2017 May; 155():141-166. PubMed ID: 28222363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of the Forecasting Methods, Precipitation Character, and Satellite Resolution on the Predictability of Short-Term Quantitative Precipitation Nowcasting (QPN) from a Geostationary Satellite.
    Liu Y; Xi DG; Li ZL; Ji W
    PLoS One; 2015; 10(10):e0140044. PubMed ID: 26447470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Error Model for the Assimilation of All-Sky FY-4A/AGRI Infrared Radiance Observations.
    Pu D; Wu Y
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Seasonal solar irradiance forecasting using artificial intelligence techniques with uncertainty analysis.
    Gayathry V; Kaliyaperumal D; Salkuti SR
    Sci Rep; 2024 Aug; 14(1):17945. PubMed ID: 39095506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Girasol, a sky imaging and global solar irradiance dataset.
    Terrén-Serrano G; Bashir A; Estrada T; Martínez-Ramón M
    Data Brief; 2021 Apr; 35():106914. PubMed ID: 33786343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BeiDou Geostationary Satellite Code Bias Modeling Using Fengyun-3C Onboard Measurements.
    Jiang K; Li M; Zhao Q; Li W; Guo X
    Sensors (Basel); 2017 Oct; 17(11):. PubMed ID: 29076998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generalized Split-Window Algorithm for Estimate of Land Surface Temperature from Chinese Geostationary FengYun Meteorological Satellite (FY-2C) Data.
    Tang B; Bi Y; Li ZL; Xia J
    Sensors (Basel); 2008 Feb; 8(2):933-951. PubMed ID: 27879744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Annually and monthly resolved solar irradiance and atmospheric temperature data across the Hawaiian archipelago from 1998 to 2015 with interannual summary statistics.
    Bryce R; Losada Carreño I; Kumler A; Hodge BM; Roberts B; Brancucci Martinez-Anido C
    Data Brief; 2018 Aug; 19():896-920. PubMed ID: 29900389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of the Land Surface Temperature over the Tibetan Plateau by Using Chinese FY-2C Geostationary Satellite Data.
    Hu Y; Zhong L; Ma Y; Zou M; Xu K; Huang Z; Feng L
    Sensors (Basel); 2018 Jan; 18(2):. PubMed ID: 29382089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assimilating Satellite Land Surface States Data from Fengyun-4A.
    Meng C; Li H
    Sci Rep; 2019 Dec; 9(1):19567. PubMed ID: 31862908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Examining the Potential of a Random Forest Derived Cloud Mask from GOES-R Satellites to Improve Solar Irradiance Forecasting.
    McCandless T; Jiménez PA
    Energies (Basel); 2020 Apr; 13(7):1671. PubMed ID: 34158911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short-term solar radiation forecasting using machine learning models under different sky conditions: evaluations and comparisons.
    Belmahdi B; Bouardi AE
    Environ Sci Pollut Res Int; 2024 Jan; 31(1):966-981. PubMed ID: 38030838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Physics-Based DNI Model Assessing All-Sky Circumsolar Radiation.
    Xie Y; Sengupta M; Liu Y; Long H; Min Q; Liu W; Habte A
    iScience; 2020 Mar; 23(3):100893. PubMed ID: 32088395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Operational application of Fengyun geostationary meteorological satellites to cloud observation products.
    Du M; Luo S; Shi J; Guo W; Zhang J; Gu H; Gu W
    Sci Rep; 2024 Aug; 14(1):17880. PubMed ID: 39095529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A solar radiation database for Chile.
    Molina A; Falvey M; Rondanelli R
    Sci Rep; 2017 Nov; 7(1):14823. PubMed ID: 29093511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.