These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 32375355)

  • 1. Ultrasonic Touch Sensing System Based on Lamb Waves and Convolutional Neural Network.
    Chang CS; Lee YC
    Sensors (Basel); 2020 May; 20(9):. PubMed ID: 32375355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of air gap reflections during air-coupled leaky Lamb wave inspection of thin plates.
    Fan Z; Jiang W; Cai M; Wright WM
    Ultrasonics; 2016 Feb; 65():282-95. PubMed ID: 26464105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Defect Detection of Aluminium Plates Based on Near-Field Enhancement of Lamb Waves Generated Using an Electromagnetic Acoustic Tranducer.
    Zhou P; Zhang C; Xu K; Ren W
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31409058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Air coupled ultrasonic inspection with Lamb waves in plates showing mode conversion.
    Römmeler A; Zolliker P; Neuenschwander J; van Gemmeren V; Weder M; Dual J
    Ultrasonics; 2020 Jan; 100():105984. PubMed ID: 31479964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A flexible piezoelectric transducer design for efficient generation and reception of ultrasonic Lamb waves.
    Gachagan A; Hayward G; Banks R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Jul; 52(7):1175-82. PubMed ID: 16212257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Delamination Depth Detection in Composite Plates Using the Lamb Wave Technique Based on Convolutional Neural Networks.
    Migot A; Saaudi A; Giurgiutiu V
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38793972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurements of dispersion curves of leaky Lamb waves using a lensless line-focus transducer.
    Lee YC
    Ultrasonics; 2001 Jun; 39(4):297-306. PubMed ID: 11432440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of adhesive, host plate, transducer and excitation parameters on time reversibility of ultrasonic Lamb waves.
    Agrahari JK; Kapuria S
    Ultrasonics; 2016 Aug; 70():147-57. PubMed ID: 27176646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lamb Wave Detection for Structural Health Monitoring Using a ϕ-OTDR System.
    Zahoor R; Cerri E; Vallifuoco R; Zeni L; De Luca A; Caputo F; Minardo A
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Double-layer PVDF transducer and V(z) measurement system for measuring leaky Lamb waves in a piezoelectric plate.
    Lee YC; Kuo SH
    Ultrasonics; 2007 Mar; 46(1):25-33. PubMed ID: 17113617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scattered Ultrasonic Guided Waves Characterized by Wave Damage Interaction Coefficients: Numerical and Experimental Investigations.
    Humer C; Höll S; Kralovec C; Schagerl M
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi reflection of Lamb wave emission in an acoustic waveguide sensor.
    Schmitt M; Olfert S; Rautenberg J; Lindner G; Henning B; Reindl LM
    Sensors (Basel); 2013 Feb; 13(3):2777-85. PubMed ID: 23447010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting local material thickness from steady-state ultrasonic wavefield measurements using a convolutional neural network.
    Eckels JD; Jacobson EM; Cummings IT; Fernandez IF; Ho K; Dervilis N; Flynn EB; Wachtor AJ
    Ultrasonics; 2022 Jul; 123():106661. PubMed ID: 35176690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-contact ultrasonic gas flow metering using air-coupled leaky Lamb waves.
    Fan Z; Jiang W; Wright WMD
    Ultrasonics; 2018 Sep; 89():74-83. PubMed ID: 29738920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine Learning for Touch Localization on an Ultrasonic Lamb Wave Touchscreen.
    Bahrami S; Moriot J; Masson P; Grondin F
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A frequency selective acoustic transducer for directional Lamb wave sensing.
    Senesi M; Ruzzene M
    J Acoust Soc Am; 2011 Oct; 130(4):1899-907. PubMed ID: 21973344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A tunable bidirectional SH wave transducer based on antiparallel thickness-shear (d
    Chen M; Huan Q; Su Z; Li F
    Ultrasonics; 2019 Sep; 98():35-50. PubMed ID: 31176913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation and reception of ultrasonic guided waves in composite plates using conformable piezoelectric transmitters and optical-fiber detectors.
    Gachagan A; Hayward G; McNab A; Reynolds P; Pierce SG; Philp WR; Culshaw B
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(1):72-81. PubMed ID: 18238400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active fiber composites for the generation of Lamb waves.
    Birchmeier M; Gsell D; Juon M; Brunner AJ; Paradies R; Dual J
    Ultrasonics; 2009 Jan; 49(1):73-82. PubMed ID: 18621408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active source localization in wave guides based on machine learning.
    Hesser DF; Kocur GK; Markert B
    Ultrasonics; 2020 Aug; 106():106144. PubMed ID: 32454329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.