These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 32376085)
1. Soil Rather Than Xylem Vulnerability Controls Stomatal Response to Drought. Carminati A; Javaux M Trends Plant Sci; 2020 Sep; 25(9):868-880. PubMed ID: 32376085 [TBL] [Abstract][Full Text] [Related]
2. Stomatal closure during water deficit is controlled by below-ground hydraulics. Abdalla M; Ahmed MA; Cai G; Wankmüller F; Schwartz N; Litig O; Javaux M; Carminati A Ann Bot; 2022 Jan; 129(2):161-170. PubMed ID: 34871349 [TBL] [Abstract][Full Text] [Related]
4. Plant resistance to drought depends on timely stomatal closure. Martin-StPaul N; Delzon S; Cochard H Ecol Lett; 2017 Nov; 20(11):1437-1447. PubMed ID: 28922708 [TBL] [Abstract][Full Text] [Related]
5. Predicting plant vulnerability to drought in biodiverse regions using functional traits. Skelton RP; West AG; Dawson TE Proc Natl Acad Sci U S A; 2015 May; 112(18):5744-9. PubMed ID: 25902534 [TBL] [Abstract][Full Text] [Related]
6. Stomatal closure of tomato under drought is driven by an increase in soil-root hydraulic resistance. Abdalla M; Carminati A; Cai G; Javaux M; Ahmed MA Plant Cell Environ; 2021 Feb; 44(2):425-431. PubMed ID: 33150971 [TBL] [Abstract][Full Text] [Related]
7. Stomatal behaviour and stem xylem traits are coordinated for woody plant species under exceptional drought conditions. Pivovaroff AL; Cook VMW; Santiago LS Plant Cell Environ; 2018 Nov; 41(11):2617-2626. PubMed ID: 29904932 [TBL] [Abstract][Full Text] [Related]
8. Transpiration Reduction in Maize ( Hayat F; Ahmed MA; Zarebanadkouki M; Javaux M; Cai G; Carminati A Front Plant Sci; 2019; 10():1695. PubMed ID: 32038676 [TBL] [Abstract][Full Text] [Related]
9. Changes in abscisic acid content during and after drought are related to carbohydrate mobilization and hydraulic recovery in poplar stems. Brunetti C; Savi T; Nardini A; Loreto F; Gori A; Centritto M Tree Physiol; 2020 Jul; 40(8):1043-1057. PubMed ID: 32186735 [TBL] [Abstract][Full Text] [Related]
10. Above and belowground traits impacting transpiration decline during soil drying in 48 maize (Zea mays) genotypes. Koehler T; Schaum C; Tung SY; Steiner F; Tyborski N; Wild AJ; Akale A; Pausch J; Lueders T; Wolfrum S; Mueller CW; Vidal A; Vahl WK; Groth J; Eder B; Ahmed MA; Carminati A Ann Bot; 2023 Mar; 131(2):373-386. PubMed ID: 36479887 [TBL] [Abstract][Full Text] [Related]
11. Declining root water transport drives stomatal closure in olive under moderate water stress. Rodriguez-Dominguez CM; Brodribb TJ New Phytol; 2020 Jan; 225(1):126-134. PubMed ID: 31498457 [TBL] [Abstract][Full Text] [Related]
12. Pragmatic hydraulic theory predicts stomatal responses to climatic water deficits. Sperry JS; Wang Y; Wolfe BT; Mackay DS; Anderegg WR; McDowell NG; Pockman WT New Phytol; 2016 Nov; 212(3):577-589. PubMed ID: 27329266 [TBL] [Abstract][Full Text] [Related]
13. Stomatal factors and vulnerability of stem xylem to cavitation in poplars. Arango-Velez A; Zwiazek JJ; Thomas BR; Tyree MT Physiol Plant; 2011 Oct; 143(2):154-65. PubMed ID: 21623799 [TBL] [Abstract][Full Text] [Related]
14. Water relations in tree physiology: where to from here? Landsberg J; Waring R; Ryan M Tree Physiol; 2017 Jan; 37(1):18-32. PubMed ID: 28173481 [TBL] [Abstract][Full Text] [Related]
15. Coordination of xylem hydraulics and stomatal regulation in keeping the integrity of xylem water transport in shoots of two compound-leaved tree species. Liu YY; Song J; Wang M; Li N; Niu CY; Hao GY Tree Physiol; 2015 Dec; 35(12):1333-42. PubMed ID: 26209618 [TBL] [Abstract][Full Text] [Related]
16. Species climate range influences hydraulic and stomatal traits in Eucalyptus species. Bourne AE; Creek D; Peters JMR; Ellsworth DS; Choat B Ann Bot; 2017 Jul; 120(1):123-133. PubMed ID: 28369162 [TBL] [Abstract][Full Text] [Related]
17. A new look at water transport regulation in plants. Martínez-Vilalta J; Poyatos R; Aguadé D; Retana J; Mencuccini M New Phytol; 2014 Oct; 204(1):105-115. PubMed ID: 24985503 [TBL] [Abstract][Full Text] [Related]
18. Internal hydraulic redistribution prevents the loss of root conductivity during drought. Prieto I; Ryel RJ Tree Physiol; 2014 Jan; 34(1):39-48. PubMed ID: 24436338 [TBL] [Abstract][Full Text] [Related]
19. What plant hydraulics can tell us about responses to climate-change droughts. Sperry JS; Love DM New Phytol; 2015 Jul; 207(1):14-27. PubMed ID: 25773898 [TBL] [Abstract][Full Text] [Related]
20. Variable hydraulic resistances and their impact on plant drought response modelling. Baert A; De Schepper V; Steppe K Tree Physiol; 2015 Apr; 35(4):439-49. PubMed ID: 25273815 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]