These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
371 related articles for article (PubMed ID: 32376446)
1. In silico design and 3D printing of microfluidic chips for the preparation of size-controllable siRNA nanocomplexes. Li Y; Bøtker J; Rantanen J; Yang M; Bohr A Int J Pharm; 2020 Jun; 583():119388. PubMed ID: 32376446 [TBL] [Abstract][Full Text] [Related]
2. Inhalable siRNA-loaded nano-embedded microparticles engineered using microfluidics and spray drying. Agnoletti M; Bohr A; Thanki K; Wan F; Zeng X; Boetker JP; Yang M; Foged C Eur J Pharm Biopharm; 2017 Nov; 120():9-21. PubMed ID: 28780275 [TBL] [Abstract][Full Text] [Related]
3. High-Throughput Fabrication of Nanocomplexes Using 3D-Printed Micromixers. Bohr A; Boetker J; Wang Y; Jensen H; Rantanen J; Beck-Broichsitter M J Pharm Sci; 2017 Mar; 106(3):835-842. PubMed ID: 27938892 [TBL] [Abstract][Full Text] [Related]
4. PAMAM Dendrimers as a Delivery System for Small Interfering RNA. Kheiriabad S; Ghaffari M; Dolatabadi JEN; Hamblin MR Methods Mol Biol; 2020; 2115():91-106. PubMed ID: 32006396 [TBL] [Abstract][Full Text] [Related]
5. Microfluidics for nanomedicines manufacturing: An affordable and low-cost 3D printing approach. Tiboni M; Tiboni M; Pierro A; Del Papa M; Sparaventi S; Cespi M; Casettari L Int J Pharm; 2021 Apr; 599():120464. PubMed ID: 33713759 [TBL] [Abstract][Full Text] [Related]
6. Additive manufacturing of three-dimensional (3D) microfluidic-based microelectromechanical systems (MEMS) for acoustofluidic applications. Cesewski E; Haring AP; Tong Y; Singh M; Thakur R; Laheri S; Read KA; Powell MD; Oestreich KJ; Johnson BN Lab Chip; 2018 Jul; 18(14):2087-2098. PubMed ID: 29897358 [TBL] [Abstract][Full Text] [Related]
7. The manufacturing of 3D-printed microfluidic chips to analyse the effect upon particle size during the synthesis of lipid nanoparticles. Weaver E; Mathew E; Caldwell J; Hooker A; Uddin S; Lamprou DA J Pharm Pharmacol; 2023 Feb; 75(2):245-252. PubMed ID: 36453867 [TBL] [Abstract][Full Text] [Related]
9. Instantaneous simulation of fluids and particles in complex microfluidic devices. Wang J; Rodgers VGJ; Brisk P; Grover WH PLoS One; 2017; 12(12):e0189429. PubMed ID: 29267312 [TBL] [Abstract][Full Text] [Related]
10. Leveraging 3D-printed microfluidic micromixers for the continuous manufacture of melatonin loaded SNEDDS with enhanced antioxidant activity and skin permeability. Ongoren B; Kara A; Casettari L; Tiboni M; Lalatsa A; Sanz-Perez A; Gonzalez-Burgos E; Romero A; Juberías A; Torrado JJ; Serrano DR Int J Pharm; 2024 Sep; 663():124536. PubMed ID: 39074648 [TBL] [Abstract][Full Text] [Related]
11. Microfluidic "Pouch" Chips for Immunoassays and Nucleic Acid Amplification Tests. Mauk MG; Liu C; Qiu X; Chen D; Song J; Bau HH Methods Mol Biol; 2017; 1572():467-488. PubMed ID: 28299706 [TBL] [Abstract][Full Text] [Related]
12. 3D printing-enabled uniform temperature distributions in microfluidic devices. Sanchez D; Hawkins G; Hinnen HS; Day A; Woolley AT; Nordin GP; Munro T Lab Chip; 2022 Nov; 22(22):4393-4408. PubMed ID: 36282069 [TBL] [Abstract][Full Text] [Related]
13. Early-stage development of novel cyclodextrin-siRNA nanocomplexes allows for successful postnebulization transfection of bronchial epithelial cells. Hibbitts A; O'Mahony AM; Forde E; Nolan L; Ogier J; Desgranges S; Darcy R; MacLoughlin R; O'Driscoll CM; Cryan SA J Aerosol Med Pulm Drug Deliv; 2014 Dec; 27(6):466-77. PubMed ID: 24665866 [TBL] [Abstract][Full Text] [Related]
14. Development of a Microfluidic-Based Post-Treatment Process for Size-Controlled Lipid Nanoparticles and Application to siRNA Delivery. Kimura N; Maeki M; Sato Y; Ishida A; Tani H; Harashima H; Tokeshi M ACS Appl Mater Interfaces; 2020 Jul; 12(30):34011-34020. PubMed ID: 32667806 [TBL] [Abstract][Full Text] [Related]
16. Fabrication routes via projection stereolithography for 3D-printing of microfluidic geometries for nucleic acid amplification. Tzivelekis C; Sgardelis P; Waldron K; Whalley R; Huo D; Dalgarno K PLoS One; 2020; 15(10):e0240237. PubMed ID: 33112867 [TBL] [Abstract][Full Text] [Related]
17. Emerging Technologies and Materials for High-Resolution 3D Printing of Microfluidic Chips. Kotz F; Helmer D; Rapp BE Adv Biochem Eng Biotechnol; 2022; 179():37-66. PubMed ID: 32797271 [TBL] [Abstract][Full Text] [Related]
18. Synthesis of Polymer-Lipid Nanoparticles by Microfluidic Focusing for siRNA Delivery. Li Y; Huang X; Lee RJ; Qi Y; Wang K; Hao F; Zhang Y; Lu J; Meng Q; Li S; Xie J; Teng L Molecules; 2016 Oct; 21(10):. PubMed ID: 27763492 [TBL] [Abstract][Full Text] [Related]
19. The upcoming 3D-printing revolution in microfluidics. Bhattacharjee N; Urrios A; Kang S; Folch A Lab Chip; 2016 May; 16(10):1720-42. PubMed ID: 27101171 [TBL] [Abstract][Full Text] [Related]
20. One-Step Production Using a Microfluidic Device of Highly Biocompatible Size-Controlled Noncationic Exosome-like Nanoparticles for RNA Delivery. Kimura N; Maeki M; Ishida A; Tani H; Tokeshi M ACS Appl Bio Mater; 2021 Feb; 4(2):1783-1793. PubMed ID: 35014524 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]