BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 32376778)

  • 21. An improved model for the rate-level functions of auditory-nerve fibers.
    Heil P; Neubauer H; Irvine DR
    J Neurosci; 2011 Oct; 31(43):15424-37. PubMed ID: 22031889
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phase-locked responses to tones of chinchilla auditory nerve fibers: implications for apical cochlear mechanics.
    Temchin AN; Ruggero MA
    J Assoc Res Otolaryngol; 2010 Jun; 11(2):297-318. PubMed ID: 19921334
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Temporal properties of responses to broadband noise in the auditory nerve.
    Louage DH; van der Heijden M; Joris PX
    J Neurophysiol; 2004 May; 91(5):2051-65. PubMed ID: 15069097
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nelson's notch in the rate-level functions of auditory-nerve fibers might be caused by PIEZO2-mediated reverse-polarity currents in hair cells.
    Heil P; Peterson AJ
    Hear Res; 2019 Sep; 381():107783. PubMed ID: 31425895
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recovery of auditory-nerve-fiber spike amplitude under natural excitation conditions.
    Peterson AJ; Huet A; Bourien J; Puel JL; Heil P
    Hear Res; 2018 Dec; 370():248-263. PubMed ID: 30177426
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sound Coding in the Auditory Nerve: From Single Fiber Activity to Cochlear Mass Potentials in Gerbils.
    Huet A; Batrel C; Wang J; Desmadryl G; Nouvian R; Puel JL; Bourien J
    Neuroscience; 2019 May; 407():83-92. PubMed ID: 30342201
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Peristimulus Time Responses Predict Adaptation and Spontaneous Firing of Auditory-Nerve Fibers: From Rodents Data to Humans.
    Huet A; Batrel C; Dubernard X; Kleiber JC; Desmadryl G; Venail F; Liberman MC; Nouvian R; Puel JL; Bourien J
    J Neurosci; 2022 Mar; 42(11):2253-2267. PubMed ID: 35078924
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Temporal coding of 200% amplitude modulated signals in the ventral cochlear nucleus of cat.
    Rhode WS
    Hear Res; 1994 Jun; 77(1-2):43-68. PubMed ID: 7928738
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neural encoding of single-formant stimuli in the cat. I. Responses of auditory nerve fibers.
    Wang X; Sachs MB
    J Neurophysiol; 1993 Sep; 70(3):1054-75. PubMed ID: 8229159
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Updated parameters and expanded simulation options for a model of the auditory periphery.
    Zilany MS; Bruce IC; Carney LH
    J Acoust Soc Am; 2014 Jan; 135(1):283-6. PubMed ID: 24437768
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Auditory cortical onset responses revisited. I. First-spike timing.
    Heil P
    J Neurophysiol; 1997 May; 77(5):2616-41. PubMed ID: 9163380
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mass Potentials Recorded at the Round Window Enable the Detection of Low Spontaneous Rate Fibers in Gerbil Auditory Nerve.
    Batrel C; Huet A; Hasselmann F; Wang J; Desmadryl G; Nouvian R; Puel JL; Bourien J
    PLoS One; 2017; 12(1):e0169890. PubMed ID: 28085968
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cochlear processes reflected in responses of the cochlear nerve.
    Smith RL
    Acta Otolaryngol; 1985; 100(1-2):1-12. PubMed ID: 2992224
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Temporal coding of resonances by low-frequency auditory nerve fibers: single-fiber responses and a population model.
    Carney LH; Yin TC
    J Neurophysiol; 1988 Nov; 60(5):1653-77. PubMed ID: 3199176
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Changes across time in spike rate and spike amplitude of auditory nerve fibers stimulated by electric pulse trains.
    Zhang F; Miller CA; Robinson BK; Abbas PJ; Hu N
    J Assoc Res Otolaryngol; 2007 Sep; 8(3):356-72. PubMed ID: 17562109
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electric-acoustic interactions in the hearing cochlea: single fiber recordings.
    Tillein J; Hartmann R; Kral A
    Hear Res; 2015 Apr; 322():112-26. PubMed ID: 25285621
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nonlinear modeling of auditory-nerve rate responses to wideband stimuli.
    Young ED; Calhoun BM
    J Neurophysiol; 2005 Dec; 94(6):4441-54. PubMed ID: 16162837
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simulation of auditory-neural transduction: further studies.
    Meddis R
    J Acoust Soc Am; 1988 Mar; 83(3):1056-63. PubMed ID: 3356811
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Desynchronization of electrically evoked auditory-nerve activity by high-frequency pulse trains of long duration.
    Litvak LM; Smith ZM; Delgutte B; Eddington DK
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):2066-78. PubMed ID: 14587606
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Encoding of information into neural spike trains in an auditory nerve fiber model with electric stimuli in the presence of a pseudospontaneous activity.
    Mino H
    IEEE Trans Biomed Eng; 2007 Mar; 54(3):360-9. PubMed ID: 17355047
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.