These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 32376922)

  • 1. Contactless mass transfer for intra-droplet extraction.
    Asano S; Takahashi Y; Maki T; Muranaka Y; Cherkasov N; Mae K
    Sci Rep; 2020 May; 10(1):7685. PubMed ID: 32376922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development in modeling submicron particle formation in two phases flow of solvent-supercritical antisolvent emulsion.
    Dukhin SS; Shen Y; Dave R; Pfeffer R
    Adv Colloid Interface Sci; 2007 Oct; 134-135():72-88. PubMed ID: 17568550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response Characteristics of Contactless Impedance Detection (CID) Sensor on Slug Flow in Small Channels: The Investigation on Slug Separation Distance.
    Wang C; Huang J; Ji H; Huang Z
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational investigations of the mixing performance inside liquid slugs generated by a microfluidic T-junction.
    Li Y; Reddy RK; Kumar CS; Nandakumar K
    Biomicrofluidics; 2014 Sep; 8(5):054125. PubMed ID: 25538812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic generation of aqueous two-phase-system (ATPS) droplets by oil-droplet choppers.
    Zhou C; Zhu P; Tian Y; Tang X; Shi R; Wang L
    Lab Chip; 2017 Sep; 17(19):3310-3317. PubMed ID: 28861566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A New Contactless Cross-Correlation Velocity Measurement System for Gas-Liquid Two-Phase Flow.
    Sheng B; Huang J; Ji H; Huang Z
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The separation of immiscible liquid slugs within plastic microchannels using a metallic hydrophilic sidestream.
    Scheiff F; Mendorf M; Agar D; Reis N; Mackley M
    Lab Chip; 2011 Mar; 11(6):1022-9. PubMed ID: 21279200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The intensification of rapid reactions in multiphase systems using slug flow in capillaries.
    Burns JR; Ramshaw C
    Lab Chip; 2001 Sep; 1(1):10-5. PubMed ID: 15100883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrodynamic Characterization of Phase Separation in Devices with Microfabricated Capillaries.
    Radhakrishnan ANP; Pradas M; Sorensen E; Kalliadasis S; Gavriilidis A
    Langmuir; 2019 Jun; 35(25):8199-8209. PubMed ID: 31184901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative study for control of air-liquid segmented flow in a 3D-printed chip using a vacuum-driven system.
    Hong H; Song JM; Yeom E
    Sci Rep; 2022 May; 12(1):8986. PubMed ID: 35643726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water slug formation and motion in gas flow channels: the effects of geometry, surface wettability, and gravity.
    Cheah MJ; Kevrekidis IG; Benziger JB
    Langmuir; 2013 Aug; 29(31):9918-34. PubMed ID: 23876035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photosynthetic sea slugs induce protective changes to the light reactions of the chloroplasts they steal from algae.
    Havurinne V; Tyystjärvi E
    Elife; 2020 Oct; 9():. PubMed ID: 33077025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Liquid-liquid-liquid three-phase microsystem: hybrid slug flow-laminar flow.
    Wang T; Xu C
    Lab Chip; 2020 Jun; 20(11):1891-1897. PubMed ID: 32409801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On-demand generation and mixing of liquid-in-gas slugs with digitally-programmable composition and size.
    Chen YC; Liu K; Shen CK; van Dam RM
    J Micromech Microeng; 2015 Aug; 25(8):. PubMed ID: 29167603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-phase slug flow in microchips can provide beneficial reaction conditions for enzyme liquid-liquid reactions.
    Cech J; Přibyl M; Snita D
    Biomicrofluidics; 2013; 7(5):54103. PubMed ID: 24404066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gas-liquid-liquid three-phase flow pattern and pressure drop in a microfluidic chip: similarities with gas-liquid/liquid-liquid flows.
    Yue J; Rebrov EV; Schouten JC
    Lab Chip; 2014 May; 14(9):1632-49. PubMed ID: 24651271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Precise, contactless measurements of the surface tension of picolitre aerosol droplets.
    Bzdek BR; Power RM; Simpson SH; Reid JP; Royall CP
    Chem Sci; 2016 Jan; 7(1):274-285. PubMed ID: 28758004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrodynamics of Two Interacting Liquid Droplets of Aqueous Solution inside a Microchannel.
    Pradhan TK; Panigrahi PK
    Langmuir; 2018 Apr; 34(15):4626-4633. PubMed ID: 29561624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Droplet-based microextraction in the aqueous two-phase system.
    Choi YH; Song YS; Kim DH
    J Chromatogr A; 2010 Jun; 1217(24):3723-8. PubMed ID: 20447637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.