These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 32377219)
41. Superior reductions in hepatic steatosis and fibrosis with co-administration of a glucagon-like peptide-1 receptor agonist and obeticholic acid in mice. Jouihan H; Will S; Guionaud S; Boland ML; Oldham S; Ravn P; Celeste A; Trevaskis JL Mol Metab; 2017 Nov; 6(11):1360-1370. PubMed ID: 29107284 [TBL] [Abstract][Full Text] [Related]
42. Farnesoid X receptor induces Takeda G-protein receptor 5 cross-talk to regulate bile acid synthesis and hepatic metabolism. Pathak P; Liu H; Boehme S; Xie C; Krausz KW; Gonzalez F; Chiang JYL J Biol Chem; 2017 Jun; 292(26):11055-11069. PubMed ID: 28478385 [TBL] [Abstract][Full Text] [Related]
43. The Adaptive Characteristics of Cholesterol and Bile Acid Metabolism in Nile Tilapia Fed a High-Fat Diet. Li RX; Qian YF; Zhou WH; Wang JX; Zhang YY; Luo Y; Qiao F; Chen LQ; Zhang ML; Du ZY Aquac Nutr; 2022; 2022():8016616. PubMed ID: 36860444 [TBL] [Abstract][Full Text] [Related]
44. Mulberry ( Noh DJ; Yoon GA Nutr Res Pract; 2022 Dec; 16(6):716-728. PubMed ID: 36467763 [TBL] [Abstract][Full Text] [Related]
45. Biochemical and histological characterisation of an experimental rodent model of non-alcoholic steatohepatitis - Effects of a peroxisome proliferator-activated receptor gamma (PPAR-γ) agonist and a glucagon-like peptide-1 analogue. Daniels SJ; Leeming DJ; Detlefsen S; Bruun MF; Hjuler ST; Henriksen K; Hein P; Karsdal MA; Brockbank S; Cruwys S Biomed Pharmacother; 2019 Mar; 111():926-933. PubMed ID: 30841472 [TBL] [Abstract][Full Text] [Related]
46. Hepatocyte MyD88 affects bile acids, gut microbiota and metabolome contributing to regulate glucose and lipid metabolism. Duparc T; Plovier H; Marrachelli VG; Van Hul M; Essaghir A; Ståhlman M; Matamoros S; Geurts L; Pardo-Tendero MM; Druart C; Delzenne NM; Demoulin JB; van der Merwe SW; van Pelt J; Bäckhed F; Monleon D; Everard A; Cani PD Gut; 2017 Apr; 66(4):620-632. PubMed ID: 27196572 [TBL] [Abstract][Full Text] [Related]
47. Multi‑omics‑based analysis of the regulatory mechanism of gypenosides on bile acids in hypercholesterolemic mice. Feng C; Yang Y; Lu A; Tan D; Lu Y; Qin L; He Y Exp Ther Med; 2023 Sep; 26(3):438. PubMed ID: 37614436 [No Abstract] [Full Text] [Related]
48. Zoledronic acid prevents the hepatic changes associated with high fat diet in rats; the potential role of mevalonic acid pathway in nonalcoholic steatohepatitis. Mohamed RH; Tarek M; Hamam GG; Ezzat SF Eur J Pharmacol; 2019 Sep; 858():172469. PubMed ID: 31233751 [TBL] [Abstract][Full Text] [Related]
49. Hu Y; Liu HX; Jena PK; Sheng L; Ali MR; Wan YY JHEP Rep; 2020 Apr; 2(2):100093. PubMed ID: 32195457 [TBL] [Abstract][Full Text] [Related]
50. Bile acids override steatosis in farnesoid X receptor deficient mice in a model of non-alcoholic steatohepatitis. Wu W; Liu X; Peng X; Xue R; Ji L; Shen X; Chen S; Gu J; Zhang S Biochem Biophys Res Commun; 2014 May; 448(1):50-5. PubMed ID: 24747563 [TBL] [Abstract][Full Text] [Related]
51. INT-767 improves histopathological features in a diet-induced Roth JD; Feigh M; Veidal SS; Fensholdt LK; Rigbolt KT; Hansen HH; Chen LC; Petitjean M; Friley W; Vrang N; Jelsing J; Young M World J Gastroenterol; 2018 Jan; 24(2):195-210. PubMed ID: 29375205 [TBL] [Abstract][Full Text] [Related]
52. Roux-en-Y Gastric Bypass Improves Metabolic Conditions in Association with Increased Serum Bile Acids Level and Hepatic Farnesoid X Receptor Expression in a T2DM Rat Model. Yan Y; Sha Y; Huang X; Yuan W; Wu F; Hong J; Fang S; Huang B; Hu C; Wang B; Zhang X Obes Surg; 2019 Sep; 29(9):2912-2922. PubMed ID: 31079286 [TBL] [Abstract][Full Text] [Related]
53. Effects of total iridoid glycosides of Xu X; Wang WT; Zhao ZY; Xi WG; Yu B; Hao CH; Li X; Hou WB; Tang LD Chin Herb Med; 2020 Jan; 12(1):67-72. PubMed ID: 36117562 [TBL] [Abstract][Full Text] [Related]
54. High-trans fatty acid and high-sugar diets can cause mice with non-alcoholic steatohepatitis with liver fibrosis and potential pathogenesis. Xin X; Cai BY; Chen C; Tian HJ; Wang X; Hu YY; Feng Q Nutr Metab (Lond); 2020; 17():40. PubMed ID: 32508961 [TBL] [Abstract][Full Text] [Related]
55. [Preventive and therapeutic effects of compound ginkgo extract in rats with nonalcoholic steatohepatitis induced by high-fat, high-fructose diet]. Yang Q; Zhao H; Zhou AZ; Lou ZH Zhonghua Gan Zang Bing Za Zhi; 2016 Nov; 24(11):852-858. PubMed ID: 27978932 [No Abstract] [Full Text] [Related]
56. Nonalcoholic steatohepatitis as a novel player in metabolic syndrome-induced erectile dysfunction: an experimental study in the rabbit. Vignozzi L; Filippi S; Comeglio P; Cellai I; Sarchielli E; Morelli A; Rastrelli G; Maneschi E; Galli A; Vannelli GB; Saad F; Mannucci E; Adorini L; Maggi M Mol Cell Endocrinol; 2014 Mar; 384(1-2):143-54. PubMed ID: 24486698 [TBL] [Abstract][Full Text] [Related]
57. Obeticholic acid protects mice against lipopolysaccharide-induced liver injury and inflammation. Xiong X; Ren Y; Cui Y; Li R; Wang C; Zhang Y Biomed Pharmacother; 2017 Dec; 96():1292-1298. PubMed ID: 29174575 [TBL] [Abstract][Full Text] [Related]
58. Activation of farnesoid X receptor attenuates hepatic injury in a murine model of alcoholic liver disease. Wu W; Zhu B; Peng X; Zhou M; Jia D; Gu J Biochem Biophys Res Commun; 2014 Jan; 443(1):68-73. PubMed ID: 24269813 [TBL] [Abstract][Full Text] [Related]
59. Lack of ClC-2 Alleviates High Fat Diet-Induced Insulin Resistance and Non-Alcoholic Fatty Liver Disease. Fu D; Cui H; Zhang Y Cell Physiol Biochem; 2018; 45(6):2187-2198. PubMed ID: 29550812 [TBL] [Abstract][Full Text] [Related]