These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 32377408)

  • 1. Toward Development of a Vocal Fold Contact Pressure Probe: Sensor Characterization and Validation Using Synthetic Vocal Fold Models.
    Motie-Shirazi M; Zañartu M; Peterson SD; Mehta DD; Kobler JB; Hillman RE; Erath BD
    Appl Sci (Basel); 2019 Aug; 9(15):. PubMed ID: 32377408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct measurement and modeling of intraglottal, subglottal, and vocal fold collision pressures during phonation in an individual with a hemilaryngectomy.
    Mehta DD; Kobler JB; Zeitels SM; Zañartu M; Ibarra EJ; Alzamendi GA; Manriquez R; Erath BD; Peterson SD; Petrillo RH; Hillman RE
    Appl Sci (Basel); 2021 Aug; 11(16):. PubMed ID: 36210866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward Development of a Vocal Fold Contact Pressure Probe: Bench-Top Validation of a Dual-Sensor Probe Using Excised Human Larynx Models.
    Mehta DD; Kobler JB; Zeitels SM; Zañartu M; Erath BD; Motie-Shirazi M; Peterson SD; Petrillo RH; Hillman RE
    Appl Sci (Basel); 2019 Oct; 9(20):. PubMed ID: 34084559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vocal fold dynamics in a synthetic self-oscillating model: Contact pressure and dissipated-energy dose.
    Motie-Shirazi M; Zañartu M; Peterson SD; Erath BD
    J Acoust Soc Am; 2021 Jul; 150(1):478. PubMed ID: 34340498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vocal fold dynamics in a synthetic self-oscillating model: Intraglottal aerodynamic pressure and energy.
    Motie-Shirazi M; Zañartu M; Peterson SD; Erath BD
    J Acoust Soc Am; 2021 Aug; 150(2):1332. PubMed ID: 34470335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intraglottal velocity and pressure measurements in a hemilarynx model.
    Oren L; Gutmark E; Khosla S
    J Acoust Soc Am; 2015 Feb; 137(2):935-43. PubMed ID: 25698025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of nodule size and stiffness on phonation threshold and collision pressures in a synthetic hemilaryngeal vocal fold model.
    Motie-Shirazi M; Zañartu M; Peterson SD; Mehta DD; Hillman RE; Erath BD
    J Acoust Soc Am; 2023 Jan; 153(1):654. PubMed ID: 36732229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of the Driving Force During the Normal Vocal Fold Vibration Cycle.
    DeJonckere PH; Lebacq J; Titze IR
    J Voice; 2017 Nov; 31(6):649-661. PubMed ID: 28495329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical study of the effects of inferior and superior vocal fold surface angles on vocal fold pressure distributions.
    Li S; Scherer RC; Wan M; Wang S; Wu H
    J Acoust Soc Am; 2006 May; 119(5 Pt 1):3003-10. PubMed ID: 16708956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of vocal fold intraglottal pressure and impact stress.
    Jiang JJ; Titze IR
    J Voice; 1994 Jun; 8(2):132-44. PubMed ID: 8061769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A computational study of the effect of intraglottal vortex-induced negative pressure on vocal fold vibration.
    Farahani MH; Zhang Z
    J Acoust Soc Am; 2014 Nov; 136(5):EL369-75. PubMed ID: 25373995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating Vocal Fold Contact Pressure from Raw Laryngeal High-Speed Videoendoscopy Using a Hertz Contact Model.
    Díaz-Cádiz ME; Peterson SD; Galindo GE; Espinoza VM; Motie-Shirazi M; Erath BD; Zañartu M
    Appl Sci (Basel); 2019 Jun; 9(11):. PubMed ID: 34267956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterizing liquid redistribution in a biphasic vibrating vocal fold using finite element analysis.
    Kvit AA; Devine EE; Jiang JJ; Vamos AC; Tao C
    J Voice; 2015 May; 29(3):265-72. PubMed ID: 25619469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing Vocal Fold Contact Criteria Derived From Audio and Electroglottographic Signals.
    Enflo L; Herbst CT; Sundberg J; McAllister A
    J Voice; 2016 Jul; 30(4):381-8. PubMed ID: 26546098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation of vocal fold impact pressures with a self-oscillating finite-element model.
    Tao C; Jiang JJ; Zhang Y
    J Acoust Soc Am; 2006 Jun; 119(6):3987-94. PubMed ID: 16838541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo measurement of vocal fold surface resistance.
    Mizuta M; Kurita T; Dillon NP; Kimball EE; Garrett CG; Sivasankar MP; Webster RJ; Rousseau B
    Laryngoscope; 2017 Oct; 127(10):E364-E370. PubMed ID: 28573762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A methodological study of hemilaryngeal phonation.
    Jiang JJ; Titze IR
    Laryngoscope; 1993 Aug; 103(8):872-82. PubMed ID: 8361290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational simulations of vocal fold vibration: Bernoulli versus Navier-Stokes.
    Decker GZ; Thomson SL
    J Voice; 2007 May; 21(3):273-84. PubMed ID: 16504473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A theoretical model of the pressure field arising from asymmetric intraglottal flows applied to a two-mass model of the vocal folds.
    Erath BD; Peterson SD; Zañartu M; Wodicka GR; Plesniak MW
    J Acoust Soc Am; 2011 Jul; 130(1):389-403. PubMed ID: 21786907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hemi-laryngeal Setup for Studying Vocal Fold Vibration in Three Dimensions.
    Herbst CT; Hampala V; Garcia M; Hofer R; Svec JG
    J Vis Exp; 2017 Nov; (129):. PubMed ID: 29286438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.