These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 32377524)

  • 1. Effect of Insulin on Proximal Tubules Handling of Glucose: A Systematic Review.
    Pereira-Moreira R; Muscelli E
    J Diabetes Res; 2020; 2020():8492467. PubMed ID: 32377524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental type II diabetes and related models of impaired glucose metabolism differentially regulate glucose transporters at the proximal tubule brush border membrane.
    Chichger H; Cleasby ME; Srai SK; Unwin RJ; Debnam ES; Marks J
    Exp Physiol; 2016 Jun; 101(6):731-42. PubMed ID: 27164183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in sodium or glucose filtration rate modulate expression of glucose transporters in renal proximal tubular cells of rat.
    Vestri S; Okamoto MM; de Freitas HS; Aparecida Dos Santos R; Nunes MT; Morimatsu M; Heimann JC; Machado UF
    J Membr Biol; 2001 Jul; 182(2):105-12. PubMed ID: 11447502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Colocalization of GLUT2 glucose transporter, sodium/glucose cotransporter, and gamma-glutamyl transpeptidase in rat kidney with double-peroxidase immunocytochemistry.
    Cramer SC; Pardridge WM; Hirayama BA; Wright EM
    Diabetes; 1992 Jun; 41(6):766-70. PubMed ID: 1350259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting renal glucose reabsorption to treat hyperglycaemia: the pleiotropic effects of SGLT2 inhibition.
    Vallon V; Thomson SC
    Diabetologia; 2017 Feb; 60(2):215-225. PubMed ID: 27878313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SGLT2 inhibition and renal urate excretion: role of luminal glucose, GLUT9, and URAT1.
    Novikov A; Fu Y; Huang W; Freeman B; Patel R; van Ginkel C; Koepsell H; Busslinger M; Onishi A; Nespoux J; Vallon V
    Am J Physiol Renal Physiol; 2019 Jan; 316(1):F173-F185. PubMed ID: 30427222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fructose reabsorption by rat proximal tubules: role of Na
    Gonzalez-Vicente A; Cabral PD; Hong NJ; Asirwatham J; Saez F; Garvin JL
    Am J Physiol Renal Physiol; 2019 Mar; 316(3):F473-F480. PubMed ID: 30565998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kidney: its impact on glucose homeostasis and hormonal regulation.
    Mitrakou A
    Diabetes Res Clin Pract; 2011 Aug; 93 Suppl 1():S66-72. PubMed ID: 21864754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiology of renal glucose handling via SGLT1, SGLT2 and GLUT2.
    Ghezzi C; Loo DDF; Wright EM
    Diabetologia; 2018 Oct; 61(10):2087-2097. PubMed ID: 30132032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Renal Tubular Handling of Glucose and Fructose in Health and Disease.
    Vallon V; Nakagawa T
    Compr Physiol; 2021 Dec; 12(1):2995-3044. PubMed ID: 34964123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Contribution of the kidney to glucose homeostasis].
    Segura J; Ruilope LM
    Med Clin (Barc); 2013 Sep; 141 Suppl 2():26-30. PubMed ID: 24444521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The human kidney low affinity Na+/glucose cotransporter SGLT2. Delineation of the major renal reabsorptive mechanism for D-glucose.
    Kanai Y; Lee WS; You G; Brown D; Hediger MA
    J Clin Invest; 1994 Jan; 93(1):397-404. PubMed ID: 8282810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insulin promotes sodium transport but suppresses gluconeogenesis via distinct cellular pathways in human and rat renal proximal tubules.
    Nakamura M; Tsukada H; Seki G; Satoh N; Mizuno T; Fujii W; Horita S; Moriya K; Sato Y; Kume H; Nangaku M; Suzuki M
    Kidney Int; 2020 Feb; 97(2):316-326. PubMed ID: 31735358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acid Loading Unmasks Glucose Homeostatic Instability in Proximal-Tubule-Targeted Insulin/Insulin-Like-Growth-Factor-1 Receptor Dual Knockout Mice.
    Aljaylani A; Fluitt M; Piselli A; Shepard BD; Tiwari S; Ecelbarger CM
    Cell Physiol Biochem; 2020 Jul; 54(4):682-695. PubMed ID: 32678535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing SGLT2 as a therapeutic target for diabetes: basic physiology and consequences.
    Gallo LA; Wright EM; Vallon V
    Diab Vasc Dis Res; 2015 Mar; 12(2):78-89. PubMed ID: 25616707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Luseogliflozin, a SGLT2 Inhibitor, Does Not Affect Glucose Uptake Kinetics in Renal Proximal Tubules of Live Mice.
    Zhang A; Nakano D; Kittikulsuth W; Yamashita Y; Nishiyama A
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Natural Products as Lead Compounds for Sodium Glucose Cotransporter (SGLT) Inhibitors.
    Blaschek W
    Planta Med; 2017 Aug; 83(12-13):985-993. PubMed ID: 28395363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The controversial role of glucose in the diabetic kidney.
    Fernandes R
    Porto Biomed J; 2021; 6(1):e113. PubMed ID: 33532655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual Regulation of Gluconeogenesis by Insulin and Glucose in the Proximal Tubules of the Kidney.
    Sasaki M; Sasako T; Kubota N; Sakurai Y; Takamoto I; Kubota T; Inagi R; Seki G; Goto M; Ueki K; Nangaku M; Jomori T; Kadowaki T
    Diabetes; 2017 Sep; 66(9):2339-2350. PubMed ID: 28630133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SGLT2 Inhibitors: Physiology and Pharmacology.
    Wright EM
    Kidney360; 2021 Dec; 2(12):2027-2037. PubMed ID: 35419546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.