These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 32377657)

  • 1. Raman spectrum and polarizability of liquid water from deep neural networks.
    Sommers GM; Calegari Andrade MF; Zhang L; Wang H; Car R
    Phys Chem Chem Phys; 2020 May; 22(19):10592-10602. PubMed ID: 32377657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep machine learning interatomic potential for liquid silica.
    Balyakin IA; Rempel SV; Ryltsev RE; Rempel AA
    Phys Rev E; 2020 Nov; 102(5-1):052125. PubMed ID: 33327164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Infrared and Raman line shapes of dilute HOD in liquid H2O and D2O from 10 to 90 degrees C.
    Corcelli SA; Skinner JL
    J Phys Chem A; 2005 Jul; 109(28):6154-65. PubMed ID: 16833955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum calculations of the IR spectrum of liquid water using ab initio and model potential and dipole moment surfaces and comparison with experiment.
    Liu H; Wang Y; Bowman JM
    J Chem Phys; 2015 May; 142(19):194502. PubMed ID: 26001464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Intermolecular Charge Transfer in Liquid Water on Raman Spectra.
    Ito H; Hasegawa T; Tanimura Y
    J Phys Chem Lett; 2016 Oct; 7(20):4147-4151. PubMed ID: 27689824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Raman Spectra of Liquid Water from Ab Initio Molecular Dynamics: Vibrational Signatures of Charge Fluctuations in the Hydrogen Bond Network.
    Wan Q; Spanu L; Galli GA; Gygi F
    J Chem Theory Comput; 2013 Sep; 9(9):4124-30. PubMed ID: 26592405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. IR and SFG vibrational spectroscopy of the water bend in the bulk liquid and at the liquid-vapor interface, respectively.
    Ni Y; Skinner JL
    J Chem Phys; 2015 Jul; 143(1):014502. PubMed ID: 26156483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Raman Spectra of Amino Acids and Peptides from Machine Learning Polarizabilities.
    Berger E; Niemelä J; Lampela O; Juffer AH; Komsa HP
    J Chem Inf Model; 2024 Jun; 64(12):4601-4612. PubMed ID: 38829726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A polarizable water model for intramolecular and intermolecular vibrational spectroscopies.
    Hasegawa T; Tanimura Y
    J Phys Chem B; 2011 May; 115(18):5545-53. PubMed ID: 21486049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Raman spectra from ab initio molecular dynamics and its application to liquid S-methyloxirane.
    Luber S; Iannuzzi M; Hutter J
    J Chem Phys; 2014 Sep; 141(9):094503. PubMed ID: 25194377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulating two-dimensional infrared-Raman and Raman spectroscopies for intermolecular and intramolecular modes of liquid water.
    Ito H; Tanimura Y
    J Chem Phys; 2016 Feb; 144(7):074201. PubMed ID: 26896979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IR and Raman spectra of liquid water: theory and interpretation.
    Auer BM; Skinner JL
    J Chem Phys; 2008 Jun; 128(22):224511. PubMed ID: 18554033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analytic ab initio calculations of coherent anti-Stokes Raman scattering (CARS).
    Thorvaldsen AJ; Ferrighi L; Ruud K; Agren H; Coriani S; Jørgensen P
    Phys Chem Chem Phys; 2009 Apr; 11(13):2293-304. PubMed ID: 19305904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Interplay of Structure and Dynamics in the Raman Spectrum of Liquid Water over the Full Frequency and Temperature Range.
    Morawietz T; Marsalek O; Pattenaude SR; Streacker LM; Ben-Amotz D; Markland TE
    J Phys Chem Lett; 2018 Feb; 9(4):851-857. PubMed ID: 29394069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling Intermolecular and Intramolecular Modes of Liquid Water Using Multiple Heat Baths: Machine Learning Approach.
    Ueno S; Tanimura Y
    J Chem Theory Comput; 2020 Apr; 16(4):2099-2108. PubMed ID: 32150682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum Local Monomer IR Spectrum of Liquid D2O at 300 K from 0 to 4000 cm(-1) Is in Near-Quantitative Agreement with Experiment.
    Liu H; Wang Y; Bowman JM
    J Phys Chem B; 2016 Mar; 120(10):2824-8. PubMed ID: 26906967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward ab initio molecular dynamics modeling for sum-frequency generation spectra; an efficient algorithm based on surface-specific velocity-velocity correlation function.
    Ohto T; Usui K; Hasegawa T; Bonn M; Nagata Y
    J Chem Phys; 2015 Sep; 143(12):124702. PubMed ID: 26429027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Committee neural network potentials control generalization errors and enable active learning.
    Schran C; Brezina K; Marsalek O
    J Chem Phys; 2020 Sep; 153(10):104105. PubMed ID: 32933264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Infrared and Raman spectra of silica polymorphs from an ab initio parametrized polarizable force field.
    Liang Y; Miranda CR; Scandolo S
    J Chem Phys; 2006 Nov; 125(19):194524. PubMed ID: 17129140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decomposing total IR spectra of aqueous systems into solute and solvent contributions: a computational approach using maximally localized Wannier orbitals.
    Iftimie R; Tuckerman ME
    J Chem Phys; 2005 Jun; 122(21):214508. PubMed ID: 15974755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.