BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 32378254)

  • 1. Filtration efficiency of surgical and FFP3 masks against composite dust.
    Breul S; Van Landuyt KL; Reichl FX; Högg C; Hoet P; Godderis L; Van Meerbeek B; Cokic SM
    Eur J Oral Sci; 2020 Jun; 128(3):233-240. PubMed ID: 32378254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Penetration of diesel exhaust particles through commercially available dust half masks.
    Penconek A; Drążyk P; Moskal A
    Ann Occup Hyg; 2013 Apr; 57(3):360-73. PubMed ID: 23104683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of personal inhalable aerosol samplers in very slowly moving air when facing the aerosol source.
    Witschger O; Grinshpun SA; Fauvel S; Basso G
    Ann Occup Hyg; 2004 Jun; 48(4):351-68. PubMed ID: 15191944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Should we be concerned about composite (nano-)dust?
    Van Landuyt KL; Yoshihara K; Geebelen B; Peumans M; Godderis L; Hoet P; Van Meerbeek B
    Dent Mater; 2012 Nov; 28(11):1162-70. PubMed ID: 22999371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bench testing of noninvasive ventilation masks with viral filters for the protection from inhalation of infectious respirable particles.
    Dellweg D; Haidl P; Kerl J; Maurer L; Köhler D
    J Occup Environ Hyg; 2021 Mar; 18(3):118-127. PubMed ID: 33434472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of personal direct-reading dust monitors for the measurement of airborne inhalable dust.
    Thorpe A
    Ann Occup Hyg; 2007 Jan; 51(1):97-112. PubMed ID: 16799158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Respiratory source control using surgical masks with nanofiber media.
    Skaria SD; Smaldone GC
    Ann Occup Hyg; 2014 Jul; 58(6):771-81. PubMed ID: 24737728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Field Evaluation of N95 Filtering Facepiece Respirators on Construction Jobsites for Protection against Airborne Ultrafine Particles.
    Adhikari A; Mitra A; Rashidi A; Ekpo I; Schwartz J; Doehling J
    Int J Environ Res Public Health; 2018 Sep; 15(9):. PubMed ID: 30205526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoparticle Filtration Performance of Commercially Available Dust Masks.
    Rengasamy S; Eimer BC; Shaffer RE
    J Int Soc Respir Prot; 2008; 25(3):27-41. PubMed ID: 32661452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aerosol penetration study for FFP2 half masks regarding protection against diesel particles in underground mines.
    Maciejewska M; Przybyła M; Szczurek A
    J Occup Environ Hyg; 2023 Oct; 20(10):480-492. PubMed ID: 37656966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size- and Time-Dependent Particle Removal Efficiency of Face Masks and Improvised Respiratory Protection Equipment Used during the COVID-19 Pandemic.
    Pogačnik Krajnc A; Pirker L; Gradišar Centa U; Gradišek A; Mekjavic IB; Godnič M; Čebašek M; Bregant T; Remškar M
    Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33668141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of wood-dust aerosol size-distributions collected by air samplers.
    Harper M; Akbar MZ; Andrew ME
    J Environ Monit; 2004 Jan; 6(1):18-22. PubMed ID: 14737465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of single-use masks and respirators for protection of health care workers against mycobacterial aerosols.
    Chen SK; Vesley D; Brosseau LM; Vincent JH
    Am J Infect Control; 1994 Apr; 22(2):65-74. PubMed ID: 8060007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protecting staff against airborne viral particles: in vivo efficiency of laser masks.
    Derrick JL; Li PT; Tang SP; Gomersall CD
    J Hosp Infect; 2006 Nov; 64(3):278-81. PubMed ID: 16920222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative Mask Protection against Inhaling Wildfire Smoke, Allergenic Bioaerosols, and Infectious Particles.
    Wagner J; Macher JM; Chen W; Kumagai K
    Int J Environ Res Public Health; 2022 Nov; 19(23):. PubMed ID: 36497628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A field evaluation of a single sampler for respirable and inhalable indium and dust measurements at an indium-tin oxide manufacturing facility.
    Hawley Blackley B; Gibbs JL; Cummings KJ; Stefaniak AB; Park JY; Stanton M; Virji MA
    J Occup Environ Hyg; 2019 Jan; 16(1):66-77. PubMed ID: 30325716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Air sampling methodology for asphalt fume in asphalt production and asphalt roofing manufacturing facilities: total particulate sampler versus inhalable particulate sampler.
    Calzavara TS; Carter CM; Axten C
    Appl Occup Environ Hyg; 2003 May; 18(5):358-67. PubMed ID: 12746079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative and qualitative analysis of operator inhaled aerosols during routine motorised equine dental treatment.
    Bescoby SR; Davis SA; Sherriff M; Ireland AJ
    Equine Vet J; 2021 Sep; 53(5):1036-1046. PubMed ID: 33131087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of nanoparticle filtration performance of NIOSH-approved and CE-marked particulate filtering facepiece respirators.
    Rengasamy S; Eimer BC; Shaffer RE
    Ann Occup Hyg; 2009 Mar; 53(2):117-28. PubMed ID: 19261695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An evaluation of total and inhalable samplers for the collection of wood dust in three wood products industries.
    Harper M; Muller BS
    J Environ Monit; 2002 Oct; 4(5):648-56. PubMed ID: 12400909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.