BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 32378480)

  • 1. Non-coding RNA and immune-checkpoint inhibitors: friends or foes?
    Shek D; Read SA; Akhuba L; Qiao L; Gao B; Nagrial A; Carlino MS; Ahlenstiel G
    Immunotherapy; 2020 May; 12(7):513-529. PubMed ID: 32378480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immune checkpoints and cancer development: Therapeutic implications and future directions.
    Mehdizadeh S; Bayatipoor H; Pashangzadeh S; Jafarpour R; Shojaei Z; Motallebnezhad M
    Pathol Res Pract; 2021 Jul; 223():153485. PubMed ID: 34022684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting the tumor microenvironment to overcome immune checkpoint blockade therapy resistance.
    Li Y; Liu J; Gao L; Liu Y; Meng F; Li X; Qin FX
    Immunol Lett; 2020 Apr; 220():88-96. PubMed ID: 30885690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current concepts of non-coding RNA regulation of immune checkpoints in cancer.
    Smolle MA; Prinz F; Calin GA; Pichler M
    Mol Aspects Med; 2019 Dec; 70():117-126. PubMed ID: 31582259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of Immune Checkpoint Inhibitors in the Treatment of Cholangiocarcinoma.
    Zeng FL; Chen JF
    Technol Cancer Res Treat; 2021; 20():15330338211039952. PubMed ID: 34528830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Current Clinical Applications and Future Perspectives of Immune Checkpoint Inhibitors in Non-Hodgkin Lymphoma.
    Apostolidis J; Sayyed A; Darweesh M; Kaloyannidis P; Al Hashmi H
    J Immunol Res; 2020; 2020():9350272. PubMed ID: 33178841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NK Cell-Based Immune Checkpoint Inhibition.
    Khan M; Arooj S; Wang H
    Front Immunol; 2020; 11():167. PubMed ID: 32117298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting Myeloid-Derived Suppressor Cell, a Promising Strategy to Overcome Resistance to Immune Checkpoint Inhibitors.
    Hou A; Hou K; Huang Q; Lei Y; Chen W
    Front Immunol; 2020; 11():783. PubMed ID: 32508809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The importance of immune checkpoints in immune monitoring: A future paradigm shift in the treatment of cancer.
    Alemohammad H; Najafzadeh B; Asadzadeh Z; Baghbanzadeh A; Ghorbaninezhad F; Najafzadeh A; Safarpour H; Bernardini R; Brunetti O; Sonnessa M; Fasano R; Silvestris N; Baradaran B
    Biomed Pharmacother; 2022 Feb; 146():112516. PubMed ID: 34906767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MicroRNAs as regulators of immune checkpoints in cancer immunotherapy: targeting PD-1/PD-L1 and CTLA-4 pathways.
    Zabeti Touchaei A; Vahidi S
    Cancer Cell Int; 2024 Mar; 24(1):102. PubMed ID: 38462628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immune Checkpoint Inhibitors for the Treatment of Cancer: Clinical Impact and Mechanisms of Response and Resistance.
    Bagchi S; Yuan R; Engleman EG
    Annu Rev Pathol; 2021 Jan; 16():223-249. PubMed ID: 33197221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study and analysis of antitumor resistance mechanism of PD1/PD-L1 immune checkpoint blocker.
    Wang Z; Wu X
    Cancer Med; 2020 Nov; 9(21):8086-8121. PubMed ID: 32875727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Factors affecting tumor responders and predictive biomarkers of toxicities in cancer patients treated with immune checkpoint inhibitors.
    Yao L; Jia G; Lu L; Bao Y; Ma W
    Int Immunopharmacol; 2020 Aug; 85():106628. PubMed ID: 32474388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immune Checkpoint Blockade in Cancer Immunotherapy: Mechanisms, Clinical Outcomes, and Safety Profiles of PD-1/PD-L1 Inhibitors.
    Yan Y; Zhang L; Zuo Y; Qian H; Liu C
    Arch Immunol Ther Exp (Warsz); 2020 Nov; 68(6):36. PubMed ID: 33185750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunomodulatory role for MicroRNAs: Regulation of PD-1/PD-L1 and CTLA-4 immune checkpoints expression.
    Skafi N; Fayyad-Kazan M; Badran B
    Gene; 2020 Sep; 754():144888. PubMed ID: 32544493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Augmenting Anticancer Immunity Through Combined Targeting of Angiogenic and PD-1/PD-L1 Pathways: Challenges and Opportunities.
    Hack SP; Zhu AX; Wang Y
    Front Immunol; 2020; 11():598877. PubMed ID: 33250900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immune Checkpoint Inhibitors: A Promising Treatment Option for Metastatic Castration-Resistant Prostate Cancer?
    Ruiz de Porras V; Pardo JC; Notario L; Etxaniz O; Font A
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33946818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial and Temporal Changes in PD-L1 Expression in Cancer: The Role of Genetic Drivers, Tumor Microenvironment and Resistance to Therapy.
    Shklovskaya E; Rizos H
    Int J Mol Sci; 2020 Sep; 21(19):. PubMed ID: 32992658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TREM2: Keeping Pace With Immune Checkpoint Inhibitors in Cancer Immunotherapy.
    Qiu H; Shao Z; Wen X; Jiang J; Ma Q; Wang Y; Huang L; Ding X; Zhang L
    Front Immunol; 2021; 12():716710. PubMed ID: 34539652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetically Engineered Mouse Models Support a Major Role of Immune Checkpoint-Dependent Immunosurveillance Escape in B-Cell Lymphomas.
    Lemasson Q; Akil H; Feuillard J; Vincent-Fabert C
    Front Immunol; 2021; 12():669964. PubMed ID: 34113345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.