These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 32378545)

  • 1. Instrument-Dependent Factors Affecting the Precision in the Atomic Force Microscopy Stiffness Measurement of Nanoscale Liposomes.
    Takechi-Haraya Y; Goda Y; Izutsu K; Sakai-Kato K
    Chem Pharm Bull (Tokyo); 2020; 68(5):473-478. PubMed ID: 32378545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomic Force Microscopy Study on the Stiffness of Nanosized Liposomes Containing Charged Lipids.
    Takechi-Haraya Y; Goda Y; Sakai-Kato K
    Langmuir; 2018 Jul; 34(26):7805-7812. PubMed ID: 29869883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved Atomic Force Microscopy Stiffness Measurements of Nanoscale Liposomes by Cantilever Tip Shape Evaluation.
    Takechi-Haraya Y; Goda Y; Izutsu K; Sakai-Kato K
    Anal Chem; 2019 Aug; 91(16):10432-10440. PubMed ID: 31390864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Liposome characterization by quartz crystal microbalance measurements and atomic force microscopy.
    Vermette P
    Methods Enzymol; 2009; 465():43-73. PubMed ID: 19913161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of material-derived differences in the stiffness of egg yolk phosphatidylcholine-containing liposomes using atomic force microscopy.
    Takechi-Haraya Y; Matsuoka M; Imai H; Izutsu K; Sakai-Kato K
    Chem Phys Lipids; 2020 Nov; 233():104992. PubMed ID: 33058816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging and size measurement of nanoparticles in aqueous medium by use of atomic force microscopy.
    Takechi-Haraya Y; Goda Y; Sakai-Kato K
    Anal Bioanal Chem; 2018 Feb; 410(5):1525-1531. PubMed ID: 29256078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Atomic Force Microscopy to Measure the Mechanical Property of Nanosized Lipid Vesicles and Its Applications].
    Takechi-Haraya Y
    Yakugaku Zasshi; 2024; 144(5):511-519. PubMed ID: 38692926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visualization and Characterization of Liposomes by Atomic Force Microscopy.
    Engelhardt K; Preis E; Bakowsky U
    Methods Mol Biol; 2023; 2622():253-263. PubMed ID: 36781768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prototype cantilevers for quantitative lateral force microscopy.
    Reitsma MG; Gates RS; Friedman LH; Cook RF
    Rev Sci Instrum; 2011 Sep; 82(9):093706. PubMed ID: 21974593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct force measurement of the interaction between liposome and the C2A domain of synaptotagmin I using atomic force microscopy.
    Park JH; Kwon EY; Jung HI; Kim DE
    Biotechnol Lett; 2006 Apr; 28(7):505-9. PubMed ID: 16614933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contact atomic force microscopy using piezoresistive cantilevers in load force modulation mode.
    Biczysko P; Dzierka A; Jóźwiak G; Rudek M; Gotszalk T; Janus P; Grabiec P; Rangelow IW
    Ultramicroscopy; 2018 Jan; 184(Pt A):199-208. PubMed ID: 28950210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic force microscopy: a tool to study the structure, dynamics and stability of liposomal drug delivery systems.
    Spyratou E; Mourelatou EA; Makropoulou M; Demetzos C
    Expert Opin Drug Deliv; 2009 Mar; 6(3):305-17. PubMed ID: 19327046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current measurements in the intermittent-contact mode of atomic force microscopy using the Fourier method: a feasibility analysis.
    Uluutku B; Solares SD
    Beilstein J Nanotechnol; 2020; 11():453-465. PubMed ID: 32215233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flat hydrogel substrate for atomic force microscopy to observe liposomes and lipid membranes.
    Takagi A; Hokonohara H; Kawai T
    Anal Bioanal Chem; 2009 Dec; 395(7):2405-9. PubMed ID: 19802730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of surface-immobilized layers of intact liposomes.
    Vermette P; Griesser HJ; Kambouris P; Meagher L
    Biomacromolecules; 2004; 5(4):1496-502. PubMed ID: 15244470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micromechanical contact stiffness devices and application for calibrating contact resonance atomic force microscopy.
    Rosenberger MR; Chen S; Prater CB; King WP
    Nanotechnology; 2017 Jan; 28(4):044003. PubMed ID: 28000611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic Force Microscopic Analysis of the Effect of Lipid Composition on Liposome Membrane Rigidity.
    Takechi-Haraya Y; Sakai-Kato K; Abe Y; Kawanishi T; Okuda H; Goda Y
    Langmuir; 2016 Jun; 32(24):6074-82. PubMed ID: 27232007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantification of surface displacements and electromechanical phenomena via dynamic atomic force microscopy.
    Balke N; Jesse S; Yu P; Ben Carmichael ; Kalinin SV; Tselev A
    Nanotechnology; 2016 Oct; 27(42):425707. PubMed ID: 27631885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative characterization of adhesion and stiffness of corneal lens of Drosophila melanogaster using atomic force microscopy.
    Lavanya Devi AL; Nongthomba U; Bobji MS
    J Mech Behav Biomed Mater; 2016 Jan; 53():161-173. PubMed ID: 26327451
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.