These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

459 related articles for article (PubMed ID: 32378552)

  • 21. Sodium-promoted Pd/TiO2 for catalytic oxidation of formaldehyde at ambient temperature.
    Zhang C; Li Y; Wang Y; He H
    Environ Sci Technol; 2014 May; 48(10):5816-22. PubMed ID: 24738832
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mo-modified Pd/Al₂O₃ catalysts for benzene catalytic combustion.
    He Z; He Z; Wang D; Bo Q; Fan T; Jiang Y
    J Environ Sci (China); 2014 Jul; 26(7):1481-7. PubMed ID: 25079997
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of Manganese Additive on the Improvement of Low-Temperature Catalytic Activity of VO(x)-WO(x)/TiO2 Nanoparticles for Chlorobenzene Combustion.
    He F; Chen C; Liu S
    J Nanosci Nanotechnol; 2016 Jun; 16(6):6265-70. PubMed ID: 27427700
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improved activity of Ho-modified Mn/Ti catalysts for the selective catalytic reduction of NO with NH
    Zhang Y; Wu P; Li G; Zhuang K; Shen K; Wang S; Huang T
    Environ Sci Pollut Res Int; 2020 Jul; 27(21):26954-26964. PubMed ID: 32382914
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DRIFT study on cerium-tungsten/titania catalyst for selective catalytic reduction of NOx with NH3.
    Chen L; Li J; Ge M
    Environ Sci Technol; 2010 Dec; 44(24):9590-6. PubMed ID: 21087047
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of Calcination Temperature on Mg-Al Layered Double Hydroxides (LDH) as Promising Catalysts in Oxidative Dehydrogenation of Ethanol to Acetaldehyde.
    Pinthong P; Praserthdam P; Jongsomjit B
    J Oleo Sci; 2019 Jan; 68(1):95-102. PubMed ID: 30542011
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of the Mn oxidation state and lattice oxygen in Mn-based TiO2 catalysts on the low-temperature selective catalytic reduction of NO by NH3.
    Lee SM; Park KH; Kim SS; Kwon DW; Hong SC
    J Air Waste Manag Assoc; 2012 Sep; 62(9):1085-92. PubMed ID: 23019822
    [TBL] [Abstract][Full Text] [Related]  

  • 28. From Sugars to Wheels: The Conversion of Ethanol to 1,3-Butadiene over Metal-Promoted Magnesia-Silicate Catalysts.
    Shylesh S; Gokhale AA; Scown CD; Kim D; Ho CR; Bell AT
    ChemSusChem; 2016 Jun; 9(12):1462-72. PubMed ID: 27198471
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of SO
    Liang Q; Li J; He H; Yue T; Tong L
    J Environ Sci (China); 2020 Apr; 90():253-261. PubMed ID: 32081321
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Solar pyrolysis of waste rubber tires using photoactive catalysts.
    Hijazi A; Boyadjian C; Ahmad MN; Zeaiter J
    Waste Manag; 2018 Jul; 77():10-21. PubMed ID: 30008400
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Poisoning effect of Ca depositing over Mn-Ce/TiO2 catalyst for low-temperature selective catalytic reduction of NO by NH3].
    Zhou AY; Mao HF; Sheng ZY; Tan Y; Yang L
    Huan Jing Ke Xue; 2014 Dec; 35(12):4745-51. PubMed ID: 25826949
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Catalytic hydrodechlorination of 2,4-dichlorophenol on Pd/Rh/C catalysts.
    Pozan GS; Boz I
    J Hazard Mater; 2006 Aug; 136(3):917-21. PubMed ID: 16507332
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural/Texture Evolution During Facile Substitution of Ni into ZSM-5 Nanostructure vs. its Impregnation Dispersion Used in Selective Transformation of Methanol to Ethylene and Propylene.
    Sadeghpour P; Haghighi M; Esmaeili M
    Comb Chem High Throughput Screen; 2021; 24(4):490-508. PubMed ID: 32842938
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Optimization of ethylene production from ethanol dehydration using Zn-Mn-Co/HZSM-5 by response surface methodology].
    Wang W; Cheng K; Xue J; Zhang J
    Sheng Wu Gong Cheng Xue Bao; 2011 Mar; 27(3):412-8. PubMed ID: 21650022
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High ethanol sensitivity of palladium/TiO2 nanobelt surface heterostructures dominated by enlarged surface area and nano-Schottky junctions.
    Wang D; Zhou W; Hu P; Guan Y; Chen L; Li J; Wang G; Liu H; Wang J; Cao G; Jiang H
    J Colloid Interface Sci; 2012 Dec; 388(1):144-50. PubMed ID: 23010318
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydrogenation of biofuels with formic acid over a palladium-based ternary catalyst with two types of active sites.
    Wang L; Zhang B; Meng X; Su DS; Xiao FS
    ChemSusChem; 2014 Jun; 7(6):1537-41. PubMed ID: 24861954
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Catalytic and electrocatalytic oxidation of ethanol over palladium-based nanoalloy catalysts.
    Yin J; Shan S; Ng MS; Yang L; Mott D; Fang W; Kang N; Luo J; Zhong CJ
    Langmuir; 2013 Jul; 29(29):9249-58. PubMed ID: 23841935
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Selective dehydration of bio-ethanol to ethylene catalyzed by lanthanum-phosphorous-modified HZSM-5: influence of the fusel.
    Hu Y; Zhan N; Dou C; Huang H; Han Y; Yu D; Hu Y
    Biotechnol J; 2010 Nov; 5(11):1186-91. PubMed ID: 21058319
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrochemical characterization of nano-sized Pd-based catalysts as cathode materials in direct methanol fuel cells.
    Choi M; Han C; Kim IT; An JC; Lee JJ; Lee HK; Shim J
    J Nanosci Nanotechnol; 2011 Jan; 11(1):738-41. PubMed ID: 21446535
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Diethyl Ether Conversion to Ethene and Ethanol Catalyzed by Heteropoly Acids.
    Al-Faze R; Kozhevnikova EF; Kozhevnikov IV
    ACS Omega; 2021 Apr; 6(13):9310-9318. PubMed ID: 33842800
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.