These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 32378663)

  • 21. [PEG-liposome in DDS and clinical studies].
    Maruyama K
    Nihon Rinsho; 1998 Mar; 56(3):632-7. PubMed ID: 9549348
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ligation strategies for targeting liposomal nanocarriers.
    Marqués-Gallego P; de Kroon AI
    Biomed Res Int; 2014; 2014():129458. PubMed ID: 25126543
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Failure of active targeting by a cholesterol-anchored ligand and improvement by altering the lipid composition to prevent ligand desorption.
    Yamamoto S; Sakurai Y; Harashima H
    Int J Pharm; 2018 Jan; 536(1):42-49. PubMed ID: 29126905
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biomimetic Nanoparticle Drug Delivery Systems to Overcome Biological Barriers for Therapeutic Applications.
    Fukuta T; Kogure K
    Chem Pharm Bull (Tokyo); 2022; 70(5):334-340. PubMed ID: 35491189
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Targeted multifunctional lipid-based nanocarriers for image-guided drug delivery.
    Koning GA; Krijger GC
    Anticancer Agents Med Chem; 2007 Jul; 7(4):425-40. PubMed ID: 17630918
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Mitochondrial DDS Opens Innovative Pharmaceutics].
    Yamada Y
    Yakugaku Zasshi; 2016; 136(1):55-62. PubMed ID: 26725668
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photoacoustic imaging of tumor targeting with riboflavin-functionalized theranostic nanocarriers.
    Beztsinna N; Tsvetkova Y; Jose J; Rhourri-Frih B; Al Rawashdeh W; Lammers T; Kiessling F; Bestel I
    Int J Nanomedicine; 2017; 12():3813-3825. PubMed ID: 28572726
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spatial and temporal mapping of heterogeneity in liposome uptake and microvascular distribution in an orthotopic tumor xenograft model.
    Ekdawi SN; Stewart JM; Dunne M; Stapleton S; Mitsakakis N; Dou YN; Jaffray DA; Allen C
    J Control Release; 2015 Jun; 207():101-11. PubMed ID: 25862513
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Archaeobacterial ether lipid liposomes (archaeosomes) as novel vaccine and drug delivery systems.
    Patel GB; Sprott GD
    Crit Rev Biotechnol; 1999; 19(4):317-57. PubMed ID: 10723627
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis and characterization of acetyl curcumin-loaded core/shell liposome nanoparticles via an electrospray process for drug delivery, and theranostic applications.
    Reddy AS; Lakshmi BA; Kim S; Kim J
    Eur J Pharm Biopharm; 2019 Sep; 142():518-530. PubMed ID: 31365879
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Development of a Novel Liposomal DDS by Manipulating Pharmacokinetics and Intracellular Trafficking for Drug Therapy and Nucleic Acid Medicine].
    Hatakeyama H
    Yakugaku Zasshi; 2018; 138(5):591-598. PubMed ID: 29709998
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Size-adaptable and ligand (biotin)-sheddable nanocarriers equipped with avidin scavenging technology for deep tumor penetration and reduced toxicity.
    Jin Y; Wu Z; Wu C; Zi Y; Chu X; Liu J; Zhang W
    J Control Release; 2020 Apr; 320():142-158. PubMed ID: 31978442
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Virosomes: evolution of the liposome as a targeted drug delivery system.
    Kaneda Y
    Adv Drug Deliv Rev; 2000 Sep; 43(2-3):197-205. PubMed ID: 10967226
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Liposomes a vesicular nanocarrier: potential advancements in cancer chemotherapy.
    Kumar P; Gulbake A; Jain SK
    Crit Rev Ther Drug Carrier Syst; 2012; 29(5):355-419. PubMed ID: 22876808
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intratumoral Visualization of Oxaliplatin within a Liposomal Formulation Using X-ray Fluorescence Spectrometry.
    Ando H; Abu Lila AS; Tanaka M; Doi Y; Terada Y; Yagi N; Shimizu T; Okuhira K; Ishima Y; Ishida T
    Mol Pharm; 2018 Feb; 15(2):403-409. PubMed ID: 29287147
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Red blood cells: The metamorphosis of a neglected carrier into the natural mothership for artificial nanocarriers.
    Glassman PM; Hood ED; Ferguson LT; Zhao Z; Siegel DL; Mitragotri S; Brenner JS; Muzykantov VR
    Adv Drug Deliv Rev; 2021 Nov; 178():113992. PubMed ID: 34597748
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Advances in microfluidics for lipid nanoparticles and extracellular vesicles and applications in drug delivery systems.
    Maeki M; Kimura N; Sato Y; Harashima H; Tokeshi M
    Adv Drug Deliv Rev; 2018 Mar; 128():84-100. PubMed ID: 29567396
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stealth Engineering for In Vivo Drug Delivery Systems.
    Mohapatra A; Morshed BI; Haggard WO; Smith RA
    Crit Rev Biomed Eng; 2015; 43(5-6):347-69. PubMed ID: 27480580
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lipid-based drug delivery systems for cancer treatment.
    Arias JL; Clares B; Morales ME; Gallardo V; Ruiz MA
    Curr Drug Targets; 2011 Jul; 12(8):1151-65. PubMed ID: 21443475
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanocarriers Made from Non-Ionic Surfactants or Natural Polymers for Pulmonary Drug Delivery.
    Carter KC; Puig-Sellart M
    Curr Pharm Des; 2016; 22(22):3324-31. PubMed ID: 27087597
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.