These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 32378776)
1. Automated detection of left ventricle in arterial input function images for inline perfusion mapping using deep learning: A study of 15,000 patients. Xue H; Tseng E; Knott KD; Kotecha T; Brown L; Plein S; Fontana M; Moon JC; Kellman P Magn Reson Med; 2020 Nov; 84(5):2788-2800. PubMed ID: 32378776 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of an automated method for arterial input function detection for first-pass myocardial perfusion cardiovascular magnetic resonance. Jacobs M; Benovoy M; Chang LC; Arai AE; Hsu LY J Cardiovasc Magn Reson; 2016 Apr; 18():17. PubMed ID: 27055445 [TBL] [Abstract][Full Text] [Related]
4. Automated Inline Analysis of Myocardial Perfusion MRI with Deep Learning. Xue H; Davies RH; Brown LAE; Knott KD; Kotecha T; Fontana M; Plein S; Moon JC; Kellman P Radiol Artif Intell; 2020 Oct; 2(6):e200009. PubMed ID: 33330849 [TBL] [Abstract][Full Text] [Related]
5. Automatic arterial input function selection in CT and MR perfusion datasets using deep convolutional neural networks. Winder A; d'Esterre CD; Menon BK; Fiehler J; Forkert ND Med Phys; 2020 Sep; 47(9):4199-4211. PubMed ID: 32583617 [TBL] [Abstract][Full Text] [Related]
6. Deep learning based automated left ventricle segmentation and flow quantification in 4D flow cardiac MRI. Sun X; Cheng LH; Plein S; Garg P; van der Geest RJ J Cardiovasc Magn Reson; 2024; 26(1):100003. PubMed ID: 38211658 [TBL] [Abstract][Full Text] [Related]
7. Automatic left ventricle segmentation from cardiac magnetic resonance images using a capsule network. He Y; Qin W; Wu Y; Zhang M; Yang Y; Liu X; Zheng H; Liang D; Hu Z J Xray Sci Technol; 2020; 28(3):541-553. PubMed ID: 32176675 [TBL] [Abstract][Full Text] [Related]
8. Landmark Detection in Cardiac MRI by Using a Convolutional Neural Network. Xue H; Artico J; Fontana M; Moon JC; Davies RH; Kellman P Radiol Artif Intell; 2021 Sep; 3(5):e200197. PubMed ID: 34617022 [TBL] [Abstract][Full Text] [Related]
9. Automated segmentation of biventricular contours in tissue phase mapping using deep learning. Shen D; Pathrose A; Sarnari R; Blake A; Berhane H; Baraboo JJ; Carr JC; Markl M; Kim D NMR Biomed; 2021 Dec; 34(12):e4606. PubMed ID: 34476863 [TBL] [Abstract][Full Text] [Related]
10. Comparative studies of deep learning segmentation models for left ventricle segmentation. Shoaib MA; Lai KW; Chuah JH; Hum YC; Ali R; Dhanalakshmi S; Wang H; Wu X Front Public Health; 2022; 10():981019. PubMed ID: 36091529 [TBL] [Abstract][Full Text] [Related]
11. Convolutional neural network-based approach for segmentation of left ventricle myocardial scar from 3D late gadolinium enhancement MR images. Zabihollahy F; White JA; Ukwatta E Med Phys; 2019 Apr; 46(4):1740-1751. PubMed ID: 30734937 [TBL] [Abstract][Full Text] [Related]
12. A new method incorporating deep learning with shape priors for left ventricular segmentation in myocardial perfusion SPECT images. Zhu F; Li L; Zhao J; Zhao C; Tang S; Nan J; Li Y; Zhao Z; Shi J; Chen Z; Han C; Jiang Z; Zhou W Comput Biol Med; 2023 Jun; 160():106954. PubMed ID: 37130501 [TBL] [Abstract][Full Text] [Related]
13. Arterial Input Function (AIF) Correction Using AIF Plus Tissue Inputs with a Bi-LSTM Network. Huang Q; Le J; Joshi S; Mendes J; Adluru G; DiBella E Tomography; 2024 Apr; 10(5):660-673. PubMed ID: 38787011 [No Abstract] [Full Text] [Related]
14. A deep learning-based approach for automatic segmentation and quantification of the left ventricle from cardiac cine MR images. Abdeltawab H; Khalifa F; Taher F; Alghamdi NS; Ghazal M; Beache G; Mohamed T; Keynton R; El-Baz A Comput Med Imaging Graph; 2020 Apr; 81():101717. PubMed ID: 32222684 [TBL] [Abstract][Full Text] [Related]
15. Deep-Learning-Based Preprocessing for Quantitative Myocardial Perfusion MRI. Scannell CM; Veta M; Villa ADM; Sammut EC; Lee J; Breeuwer M; Chiribiri A J Magn Reson Imaging; 2020 Jun; 51(6):1689-1696. PubMed ID: 31710769 [TBL] [Abstract][Full Text] [Related]
16. Automatic left ventricle volume and mass quantification from 2D cine-MRI: Investigating papillary muscle influence. Baccouch W; Oueslati S; Solaiman B; Lahidheb D; Labidi S Med Eng Phys; 2024 May; 127():104162. PubMed ID: 38692762 [TBL] [Abstract][Full Text] [Related]
17. Fully-automated global and segmental strain analysis of DENSE cardiovascular magnetic resonance using deep learning for segmentation and phase unwrapping. Ghadimi S; Auger DA; Feng X; Sun C; Meyer CH; Bilchick KC; Cao JJ; Scott AD; Oshinski JN; Ennis DB; Epstein FH J Cardiovasc Magn Reson; 2021 Mar; 23(1):20. PubMed ID: 33691739 [TBL] [Abstract][Full Text] [Related]
18. Automated left and right ventricular chamber segmentation in cardiac magnetic resonance images using dense fully convolutional neural network. Penso M; Moccia S; Scafuri S; Muscogiuri G; Pontone G; Pepi M; Caiani EG Comput Methods Programs Biomed; 2021 Jun; 204():106059. PubMed ID: 33812305 [TBL] [Abstract][Full Text] [Related]
19. Influence of the arterial input sampling location on the diagnostic accuracy of cardiovascular magnetic resonance stress myocardial perfusion quantification. Milidonis X; Franks R; Schneider T; Sánchez-González J; Sammut EC; Plein S; Chiribiri A J Cardiovasc Magn Reson; 2021 Mar; 23(1):35. PubMed ID: 33775247 [TBL] [Abstract][Full Text] [Related]
20. Validation of a deep-learning semantic segmentation approach to fully automate MRI-based left-ventricular deformation analysis in cardiotoxicity. Karr J; Cohen M; McQuiston SA; Poorsala T; Malozzi C Br J Radiol; 2021 Apr; 94(1120):20201101. PubMed ID: 33571002 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]