These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 32378936)

  • 1. Quantitative and qualitative differences in the top-down guiding attributes of visual search.
    Hulleman J
    J Exp Psychol Hum Percept Perform; 2020 Sep; 46(9):942-964. PubMed ID: 32378936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual target search: Attention tuned to relative features, both within and across feature dimensions.
    York AA; Sewell DK; Becker SI
    J Exp Psychol Hum Percept Perform; 2020 Nov; 46(11):1368-1386. PubMed ID: 32881554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The allocation of resources in visual working memory and multiple attentional templates.
    Kerzel D; Witzel C
    J Exp Psychol Hum Percept Perform; 2019 May; 45(5):645-658. PubMed ID: 30920252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feature-based statistical regularities of distractors modulate attentional capture.
    Stilwell BT; Bahle B; Vecera SP
    J Exp Psychol Hum Percept Perform; 2019 Mar; 45(3):419-433. PubMed ID: 30802131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overt attention in contextual cuing of visual search is driven by the attentional set, but not by the predictiveness of distractors.
    Beesley T; Hanafi G; Vadillo MA; Shanks DR; Livesey EJ
    J Exp Psychol Learn Mem Cogn; 2018 May; 44(5):707-721. PubMed ID: 29608077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learned distractor rejection in the face of strong target guidance.
    Stilwell BT; Vecera SP
    J Exp Psychol Hum Percept Perform; 2020 Sep; 46(9):926-941. PubMed ID: 32391708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visual search for singleton targets redundantly defined in two feature dimensions: Coactive processing of color-motion targets?
    Krummenacher J; Müller HJ
    J Exp Psychol Hum Percept Perform; 2014 Oct; 40(5):1926-39. PubMed ID: 25089576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specifying the precision of guiding features for visual search.
    Alexander RG; Nahvi RJ; Zelinsky GJ
    J Exp Psychol Hum Percept Perform; 2019 Sep; 45(9):1248-1264. PubMed ID: 31219282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is attention really biased toward the last target location in visual search? The role of focal attention and stimulus-response translation rules.
    Hilchey MD; Pratt J; Lamy D
    J Exp Psychol Hum Percept Perform; 2019 Oct; 45(10):1415-1428. PubMed ID: 31343242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model of Multiple Identity Tracking (MOMIT) 2.0: Resolving the serial vs. parallel controversy in tracking.
    Li J; Oksama L; Hyönä J
    Cognition; 2019 Jan; 182():260-274. PubMed ID: 30384128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Saccadic selection does not eliminate attribute amnesia.
    Born S; Puntiroli M; Jordan D; Kerzel D
    J Exp Psychol Learn Mem Cogn; 2019 Dec; 45(12):2165-2173. PubMed ID: 30883172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Age-related differences in saccadic indices of top-down guidance via short-term memory during visual search.
    Barrett DJK; Hutchinson CV; Zhang F; Xie H; Wang J
    Psychol Aging; 2024 Jun; 39(4):421-435. PubMed ID: 38753407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Attentional flexibility is imbalanced: Asymmetric cost for switches between external and internal attention.
    Verschooren S; Liefooghe B; Brass M; Pourtois G
    J Exp Psychol Hum Percept Perform; 2019 Oct; 45(10):1399-1414. PubMed ID: 31343243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Salience determines attentional orienting in visual selection.
    Wang B; Theeuwes J
    J Exp Psychol Hum Percept Perform; 2020 Oct; 46(10):1051-1057. PubMed ID: 32757594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Training top-down attention improves performance on a triple-conjunction search task.
    Baluch F; Itti L
    PLoS One; 2010 Feb; 5(2):e9127. PubMed ID: 20174622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the contributions of spatial and non-spatial working memory to priming of pop-out.
    Ahn J; Patel TN; Buetti S; Lleras A
    Atten Percept Psychophys; 2017 May; 79(4):1012-1026. PubMed ID: 28176214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Memory-based attention capture when multiple items are maintained in visual working memory.
    Hollingworth A; Beck VM
    J Exp Psychol Hum Percept Perform; 2016 Jul; 42(7):911-7. PubMed ID: 27123681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statistical regularities modulate attentional capture.
    Wang B; Theeuwes J
    J Exp Psychol Hum Percept Perform; 2018 Jan; 44(1):13-17. PubMed ID: 29309194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perceptual-binding and persistent surface segregation.
    Moradi F; Shimojo S
    Vision Res; 2004 Nov; 44(25):2885-99. PubMed ID: 15380994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expectations and perceptual priming in a visual search task: Evidence from eye movements and behavior.
    Shurygina O; Kristjánsson Á; Tudge L; Chetverikov A
    J Exp Psychol Hum Percept Perform; 2019 Apr; 45(4):489-499. PubMed ID: 30816788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.