These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 32379521)

  • 21. Aerodynamic and acoustic features of vocal effort.
    Rosenthal AL; Lowell SY; Colton RH
    J Voice; 2014 Mar; 28(2):144-53. PubMed ID: 24412040
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Singers show enhanced performance and neural representation of vocal imitation.
    Waters S; Kanber E; Lavan N; Belyk M; Carey D; Cartei V; Lally C; Miquel M; McGettigan C
    Philos Trans R Soc Lond B Biol Sci; 2021 Dec; 376(1840):20200399. PubMed ID: 34719245
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Individual Monitoring of Vocal Effort With Relative Fundamental Frequency: Relationships With Aerodynamics and Listener Perception.
    Lien YA; Michener CM; Eadie TL; Stepp CE
    J Speech Lang Hear Res; 2015 Jun; 58(3):566-75. PubMed ID: 25675090
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The cricothyroid muscle in voicing control.
    Löfqvist A; Baer T; McGarr NS; Story RS
    J Acoust Soc Am; 1989 Mar; 85(3):1314-21. PubMed ID: 2708673
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Volitional exaggeration of body size through fundamental and formant frequency modulation in humans.
    Pisanski K; Mora EC; Pisanski A; Reby D; Sorokowski P; Frackowiak T; Feinberg DR
    Sci Rep; 2016 Sep; 6():34389. PubMed ID: 27687571
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Voice Onset Time in Individuals With Hyperfunctional Voice Disorders: Evidence for Disordered Vocal Motor Control.
    McKenna VS; Hylkema JA; Tardif MC; Stepp CE
    J Speech Lang Hear Res; 2020 Feb; 63(2):405-420. PubMed ID: 32013664
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of Tongue-Hold Swallows on Suprahyoid Muscle Activation According to the Relative Tongue Protrusion Length in the Elderly Individuals.
    Oh JC
    Dysphagia; 2019 Jun; 34(3):382-390. PubMed ID: 30251147
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acoustic roles of the laryngeal cavity in vocal tract resonance.
    Takemoto H; Adachi S; Kitamura T; Mokhtari P; Honda K
    J Acoust Soc Am; 2006 Oct; 120(4):2228-38. PubMed ID: 17069318
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Normal contractile algorithm of swallowing related muscles revealed by needle EMG and its comparison to videofluoroscopic swallowing study and high resolution manometry studies: A preliminary study.
    Park D; Lee HH; Lee ST; Oh Y; Lee JC; Nam KW; Ryu JS
    J Electromyogr Kinesiol; 2017 Oct; 36():81-89. PubMed ID: 28763682
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An evaluation of laryngeal muscle activation in patients with voice tremor.
    Koda J; Ludlow CL
    Otolaryngol Head Neck Surg; 1992 Nov; 107(5):684-96. PubMed ID: 1437206
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differentiated vocal tract control and the reliability of interpretations of nasendoscopic assessment.
    Madill C; Sheard C; Heard R
    J Voice; 2010 May; 24(3):337-45. PubMed ID: 19660904
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Psychometric Analysis of an Ecological Vocal Effort Scale in Individuals With and Without Vocal Hyperfunction During Activities of Daily Living.
    Marks KL; Verdi A; Toles LE; Stipancic KL; Ortiz AJ; Hillman RE; Mehta DD
    Am J Speech Lang Pathol; 2021 Nov; 30(6):2589-2604. PubMed ID: 34665647
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simulation of vowel-vowel utterances using a 3D biomechanical-acoustic model.
    Dabbaghchian S; Arnela M; Engwall O; Guasch O
    Int J Numer Method Biomed Eng; 2021 Jan; 37(1):e3407. PubMed ID: 33070445
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Changes in the human vocal tract due to aging and the acoustic correlates of speech production: a pilot study.
    Xue SA; Hao GJ
    J Speech Lang Hear Res; 2003 Jun; 46(3):689-701. PubMed ID: 14696995
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The discrimination of voice cues in simulations of bimodal electro-acoustic cochlear-implant hearing.
    Başkent D; Luckmann A; Ceha J; Gaudrain E; Tamati TN
    J Acoust Soc Am; 2018 Apr; 143(4):EL292. PubMed ID: 29716273
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Volumetric measurements of vocal tracts for male speakers from different races.
    Xue SA; Hao GJ; Mayo R
    Clin Linguist Phon; 2006 Nov; 20(9):691-702. PubMed ID: 17342877
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The relationship between acoustical and perceptual measures of vocal effort.
    McKenna VS; Stepp CE
    J Acoust Soc Am; 2018 Sep; 144(3):1643. PubMed ID: 30424674
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Does good perception of vocal characteristics relate to better speech-on-speech intelligibility for cochlear implant users?
    El Boghdady N; Gaudrain E; Başkent D
    J Acoust Soc Am; 2019 Jan; 145(1):417. PubMed ID: 30710943
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of vocal effort on spectral properties of vowels.
    Liénard JS; Di Benedetto MG
    J Acoust Soc Am; 1999 Jul; 106(1):411-22. PubMed ID: 10420631
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantitative electromyographic characteristics of idiopathic unilateral vocal fold paralysis.
    Chang WH; Fang TJ; Li HY; Jaw FS; Wong AM; Pei YC
    Laryngoscope; 2016 Nov; 126(11):E362-E368. PubMed ID: 27011064
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.