BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 32379848)

  • 1. Using simulation model as a tool for analyzing bus service reliability and implementing improvement strategies.
    Moosavi SMH; Ismail A; Yuen CW
    PLoS One; 2020; 15(5):e0232799. PubMed ID: 32379848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The impact of a passenger-safety-driven acceleration limit on the operation of a bus service.
    Karekla X; Gkiotsalitis K; Tyler N
    Accid Anal Prev; 2020 Dec; 148():105790. PubMed ID: 33099128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of limited-stop service based on the degree of unbalance of passenger demand.
    Zhang H; Zhao S; Liu H; Liang S
    PLoS One; 2018; 13(3):e0193855. PubMed ID: 29505585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitigating bus bunching with real-time crowding information.
    Drabicki A; Kucharski R; Cats O
    Transportation (Amst); 2023; 50(3):1003-1030. PubMed ID: 35261414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bunching transition in a time-headway model of a bus route.
    Nagatani T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 2):036115. PubMed ID: 11308717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An observational comparison of the older and younger bus passenger experience in a developing world city.
    Aceves-González C; May A; Cook S
    Ergonomics; 2016 Jun; 59(6):840-50. PubMed ID: 26548352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Integrated Multi-Objective Optimization for Dynamic Airport Shuttle Bus Location, Route Design and Departure Frequency Setting Problem.
    Wei M; Yang C; Liu T
    Int J Environ Res Public Health; 2022 Nov; 19(21):. PubMed ID: 36361347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic Bus Travel Time Prediction Models on Road with Multiple Bus Routes.
    Bai C; Peng ZR; Lu QC; Sun J
    Comput Intell Neurosci; 2015; 2015():432389. PubMed ID: 26294903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Joint optimization of headway and number of stops for bilateral bus rapid transit.
    Guo R; Antunes F; Zhang J; Yu J; Li W
    PLoS One; 2024; 19(3):e0300286. PubMed ID: 38478482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resilience-based optimization model for emergency bus bridging and dispatching in response to metro operational disruptions.
    Zhang J; Ren G; Song J
    PLoS One; 2023; 18(3):e0277577. PubMed ID: 36989222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Periodic Optimization of Bus Dispatching Times and Vehicle Schedules Considering the COVID-19 Capacity Limits: A Dutch Case Study.
    Gkiotsalitis K; Liu T
    Transp Res Rec; 2023 Apr; 2677(4):765-777. PubMed ID: 38603130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling Limited-Stop Bus Corridor Services with Fare Payment Mode Choice and Trip Purpose Consideration.
    Tang C; Ge YE; Zhang J; Xu Q
    Comput Intell Neurosci; 2022; 2022():4329943. PubMed ID: 36387769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact Estimation of Unplanned Urban Rail Disruptions on Public Transport Passengers: A Multi-Agent Based Simulation Approach.
    Cong C; Li X; Yang S; Zhang Q; Lu L; Shi Y
    Int J Environ Res Public Health; 2022 Jul; 19(15):. PubMed ID: 35897417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing service quality of rural public transport during the COVID-19 pandemic: a novel fuzzy approach.
    Sama HR; Chen LS; Nalluri V; Chendragiri M
    Public Transp; 2023; 15(2):479-501. PubMed ID: 38625139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterisation of an urban bus network for environmental purposes.
    André M; Villanova A
    Sci Total Environ; 2004 Dec; 334-335():85-99. PubMed ID: 15504495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. No-boarding buses: Synchronisation for efficiency.
    Saw VL; Chew LY
    PLoS One; 2020; 15(3):e0230377. PubMed ID: 32203548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dataset for developing optimal headway-based bus dispatching strategy during epidemic outbreaks.
    Huang Y; Li Z; Zhang S; Zhou B; Zhang L
    Data Brief; 2023 Aug; 49():109423. PubMed ID: 37501734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Optimization Model for the Selection of Bus-Only Lanes in a City.
    Chen Q
    PLoS One; 2015; 10(7):e0133951. PubMed ID: 26214001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of transit bus interior configuration on performance of wheeled mobility users during simulated boarding and disembarking.
    D'Souza C; Paquet V; Lenker JA; Steinfeld E
    Appl Ergon; 2017 Jul; 62():94-106. PubMed ID: 28411744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Holding times to maintain quasi-regular headways and reduce real-time bus bunching.
    Olvera-Toscano CM; Ríos-Solís YÁ; Ríos-Mercado RZ; Sánchez Nigenda R
    Public Transp; 2023 May; ():1-34. PubMed ID: 38625127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.