These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 32379871)
1. Seminal and Nodal Roots of Barley Differ in Anatomy, Proteome and Nitrate Uptake Capacity. Liu Z; Giehl RFH; Hartmann A; Hajirezaei MR; Carpentier S; von Wirén N Plant Cell Physiol; 2020 Jul; 61(7):1297-1308. PubMed ID: 32379871 [TBL] [Abstract][Full Text] [Related]
2. A Transcription Factor, OsMADS57, Regulates Long-Distance Nitrate Transport and Root Elongation. Huang S; Liang Z; Chen S; Sun H; Fan X; Wang C; Xu G; Zhang Y Plant Physiol; 2019 Jun; 180(2):882-895. PubMed ID: 30886113 [TBL] [Abstract][Full Text] [Related]
3. Auxin-mediated nitrate signalling by NRT1.1 participates in the adaptive response of Arabidopsis root architecture to the spatial heterogeneity of nitrate availability. Mounier E; Pervent M; Ljung K; Gojon A; Nacry P Plant Cell Environ; 2014 Jan; 37(1):162-74. PubMed ID: 23731054 [TBL] [Abstract][Full Text] [Related]
4. Genetic components of root architecture and anatomy adjustments to water-deficit stress in spring barley. Oyiga BC; Palczak J; Wojciechowski T; Lynch JP; Naz AA; Léon J; Ballvora A Plant Cell Environ; 2020 Mar; 43(3):692-711. PubMed ID: 31734943 [TBL] [Abstract][Full Text] [Related]
6. Plasma membrane proteome analysis identifies a role of barley membrane steroid binding protein in root architecture response to salinity. Witzel K; Matros A; Møller ALB; Ramireddy E; Finnie C; Peukert M; Rutten T; Herzog A; Kunze G; Melzer M; Kaspar-Schoenefeld S; Schmülling T; Svensson B; Mock HP Plant Cell Environ; 2018 Jun; 41(6):1311-1330. PubMed ID: 29385242 [TBL] [Abstract][Full Text] [Related]
7. How plants cope with foreign compounds. Translocation of xenobiotic glutathione conjugates in roots of barley (Hordeum vulgare). Schröder P; Scheer CE; Diekmann F; Stampfl A Environ Sci Pollut Res Int; 2007 Mar; 14(2):114-22. PubMed ID: 17455821 [TBL] [Abstract][Full Text] [Related]
8. Root-type-specific plasticity in response to localized high nitrate supply in maize (Zea mays). Yu P; Hochholdinger F; Li C Ann Bot; 2015 Oct; 116(5):751-62. PubMed ID: 26346717 [TBL] [Abstract][Full Text] [Related]
9. Responses of barley root and shoot proteomes to long-term nitrogen deficiency, short-term nitrogen starvation and ammonium. Møller AL; Pedas P; Andersen B; Svensson B; Schjoerring JK; Finnie C Plant Cell Environ; 2011 Dec; 34(12):2024-37. PubMed ID: 21736591 [TBL] [Abstract][Full Text] [Related]
10. Molecular framework integrating nitrate sensing in root and auxin-guided shoot adaptive responses. Abualia R; Ötvös K; Novák O; Bouguyon E; Domanegg K; Krapp A; Nacry P; Gojon A; Lacombe B; Benková E Proc Natl Acad Sci U S A; 2022 Aug; 119(31):e2122460119. PubMed ID: 35878040 [TBL] [Abstract][Full Text] [Related]
11. Overexpression of Nitrate Transporter Naz M; Luo B; Guo X; Li B; Chen J; Fan X Genes (Basel); 2019 Apr; 10(4):. PubMed ID: 30970675 [TBL] [Abstract][Full Text] [Related]
12. Increased expression of six ZIP family genes by zinc (Zn) deficiency is associated with enhanced uptake and root-to-shoot translocation of Zn in barley (Hordeum vulgare). Tiong J; McDonald G; Genc Y; Shirley N; Langridge P; Huang CY New Phytol; 2015 Sep; 207(4):1097-109. PubMed ID: 25904503 [TBL] [Abstract][Full Text] [Related]
13. Inhibition of maize root growth by high nitrate supply is correlated with reduced IAA levels in roots. Tian Q; Chen F; Liu J; Zhang F; Mi G J Plant Physiol; 2008 Jun; 165(9):942-51. PubMed ID: 17928098 [TBL] [Abstract][Full Text] [Related]
14. Biosensor reporting of root exudation from Hordeum vulgare in relation to shoot nitrate concentration. Darwent MJ; Paterson E; McDonald AJ; Tomos AD J Exp Bot; 2003 Jan; 54(381):325-34. PubMed ID: 12493860 [TBL] [Abstract][Full Text] [Related]
15. Auxin transport in maize roots in response to localized nitrate supply. Liu J; An X; Cheng L; Chen F; Bao J; Yuan L; Zhang F; Mi G Ann Bot; 2010 Dec; 106(6):1019-26. PubMed ID: 20929897 [TBL] [Abstract][Full Text] [Related]
16. A novel morphological response of maize (Zea mays) adult roots to heterogeneous nitrate supply revealed by a split-root experiment. Yu P; Li X; Yuan L; Li C Physiol Plant; 2014 Jan; 150(1):133-44. PubMed ID: 23724916 [TBL] [Abstract][Full Text] [Related]
17. An Age-Dependent Sequence of Physiological Processes Defines Developmental Root Senescence. Liu Z; Marella CBN; Hartmann A; Hajirezaei MR; von Wirén N Plant Physiol; 2019 Nov; 181(3):993-1007. PubMed ID: 31515448 [TBL] [Abstract][Full Text] [Related]
18. Nitrate-Dependent Control of Shoot K Homeostasis by the Nitrate Transporter1/Peptide Transporter Family Member NPF7.3/NRT1.5 and the Stelar K+ Outward Rectifier SKOR in Arabidopsis. Drechsler N; Zheng Y; Bohner A; Nobmann B; von Wirén N; Kunze R; Rausch C Plant Physiol; 2015 Dec; 169(4):2832-47. PubMed ID: 26508776 [TBL] [Abstract][Full Text] [Related]
19. CmTCP20 Plays a Key Role in Nitrate and Auxin Signaling-Regulated Lateral Root Development in Chrysanthemum. Fan HM; Sun CH; Wen LZ; Liu BW; Ren H; Sun X; Ma FF; Zheng CS Plant Cell Physiol; 2019 Jul; 60(7):1581-1594. PubMed ID: 31058993 [TBL] [Abstract][Full Text] [Related]
20. Genotypic differences in nitrate uptake, translocation and assimilation of two Chinese cabbage cultivars [Brassica campestris L. ssp. Chinensis (L.)]. Tang Y; Sun X; Hu C; Tan Q; Zhao X Plant Physiol Biochem; 2013 Sep; 70():14-20. PubMed ID: 23770590 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]