These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 32379967)

  • 1. CRISPRi-dCas12a: A dCas12a-Mediated CRISPR Interference for Repression of Multiple Genes and Metabolic Engineering in Cyanobacteria.
    Choi SY; Woo HM
    ACS Synth Biol; 2020 Sep; 9(9):2351-2361. PubMed ID: 32379967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable Repression of Key Photosynthetic Processes Using Cas12a CRISPR Interference in the Fast-Growing Cyanobacterium
    Knoot CJ; Biswas S; Pakrasi HB
    ACS Synth Biol; 2020 Jan; 9(1):132-143. PubMed ID: 31829621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR interference as a titratable, trans-acting regulatory tool for metabolic engineering in the cyanobacterium Synechococcus sp. strain PCC 7002.
    Gordon GC; Korosh TC; Cameron JC; Markley AL; Begemann MB; Pfleger BF
    Metab Eng; 2016 Nov; 38():170-179. PubMed ID: 27481676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of CRISPR Interference for Metabolic Engineering of the Heterocyst-Forming Multicellular Cyanobacterium Anabaena sp. PCC 7120.
    Higo A; Isu A; Fukaya Y; Ehira S; Hisabori T
    Plant Cell Physiol; 2018 Jan; 59(1):119-127. PubMed ID: 29112727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement of Squalene Production from CO
    Choi SY; Wang JY; Kwak HS; Lee SM; Um Y; Kim Y; Sim SJ; Choi JI; Woo HM
    ACS Synth Biol; 2017 Jul; 6(7):1289-1295. PubMed ID: 28365988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Logic NAND Gate for Controlling Gene Expression in a Circadian Rhythm in Cyanobacteria.
    Lee M; Woo HM
    ACS Synth Biol; 2020 Dec; 9(12):3210-3216. PubMed ID: 33263998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Current understanding of the cyanobacterial CRISPR-Cas systems and development of the synthetic CRISPR-Cas systems for cyanobacteria.
    Pattharaprachayakul N; Lee M; Incharoensakdi A; Woo HM
    Enzyme Microb Technol; 2020 Oct; 140():109619. PubMed ID: 32912679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Approaches in the photosynthetic production of sustainable fuels by cyanobacteria using tools of synthetic biology.
    Yadav I; Rautela A; Kumar S
    World J Microbiol Biotechnol; 2021 Oct; 37(12):201. PubMed ID: 34664124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production.
    Li H; Shen CR; Huang CH; Sung LY; Wu MY; Hu YC
    Metab Eng; 2016 Nov; 38():293-302. PubMed ID: 27693320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA-guided single/double gene repressions in Corynebacterium glutamicum using an efficient CRISPR interference and its application to industrial strain.
    Park J; Shin H; Lee SM; Um Y; Woo HM
    Microb Cell Fact; 2018 Jan; 17(1):4. PubMed ID: 29316926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scalable Cultivation of Engineered Cyanobacteria for Squalene Production from Industrial Flue Gas in a Closed Photobioreactor.
    Choi SY; Sim SJ; Ko SC; Son J; Lee JS; Lee HJ; Chang WS; Woo HM
    J Agric Food Chem; 2020 Sep; 68(37):10050-10055. PubMed ID: 32851842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR interference-guided multiplex repression of endogenous competing pathway genes for redirecting metabolic flux in Escherichia coli.
    Kim SK; Seong W; Han GH; Lee DH; Lee SG
    Microb Cell Fact; 2017 Nov; 16(1):188. PubMed ID: 29100516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of small droplets of photosynthetic squalene in engineered Synechococcus elongatus PCC 7942 using TEM and selective fluorescent Nile red analysis.
    Choi SY; Sim SJ; Choi JI; Woo HM
    Lett Appl Microbiol; 2018 Jun; 66(6):523-529. PubMed ID: 29527705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Library of Tunable, Portable, and Inducer-Free Promoters Derived from Cyanobacteria.
    Sengupta A; Madhu S; Wangikar PP
    ACS Synth Biol; 2020 Jul; 9(7):1790-1801. PubMed ID: 32551554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR interference (CRISPRi) for gene regulation and succinate production in cyanobacterium S. elongatus PCC 7942.
    Huang CH; Shen CR; Li H; Sung LY; Wu MY; Hu YC
    Microb Cell Fact; 2016 Nov; 15(1):196. PubMed ID: 27846887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward solar biodiesel production from CO2 using engineered cyanobacteria.
    Woo HM; Lee HJ
    FEMS Microbiol Lett; 2017 May; 364(9):. PubMed ID: 28407086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Base editing for reprogramming cyanobacterium Synechococcus elongatus.
    Wang SY; Li X; Wang SG; Xia PF
    Metab Eng; 2023 Jan; 75():91-99. PubMed ID: 36403709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of CRISPR-Cas9 knock-in tools for free fatty acid production using the fast-growing cyanobacterial strain Synechococcus elongatus UTEX 2973.
    Racharaks R; Arnold W; Peccia J
    J Microbiol Methods; 2021 Oct; 189():106315. PubMed ID: 34454980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR-Cas12a-Mediated Gene Deletion and Regulation in
    Zhao R; Liu Y; Zhang H; Chai C; Wang J; Jiang W; Gu Y
    ACS Synth Biol; 2019 Oct; 8(10):2270-2279. PubMed ID: 31526005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and optimization of genetic toolboxes for a fast-growing cyanobacterium Synechococcus elongatus UTEX 2973.
    Li S; Sun T; Xu C; Chen L; Zhang W
    Metab Eng; 2018 Jul; 48():163-174. PubMed ID: 29883802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.